
Stable Market Segmentation against Price

Discrimination∗

Zhonghong Kuang† Sanxi Li‡ Yi Liu§ Yang Yu¶

First Version June 1, 2022; Updated July 11, 2024

Abstract

According to current data regulations, consumers are mobile among different markets,

which endogenizes market segmentation. Considering such strategic interactions, we say

that a market segmentation is stable if no group of consumers has an incentive to deviate.

We show that in every stable market segmentation, the producer surplus remains at the

uniform monopoly level, and the consumer surplus takes a value between the buyer-optimal

level and the uniform monopoly level. Remarkably, no consumer is worse off than in the

case of uniform monopoly. Therefore, our results justify the Pareto optimum of price

discrimination and reveal the welfare implications of current regulations.
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1 Introduction

Consumers online, let us stand up and protect ourselves from price discrimination! The

proliferation of data technologies enables online sellers to collect vast amounts of consumer

information during transactions. By data inference, sellers can accurately deduce consumer

preferences and generate tags that denote various consumer features. These tags prove

valuable in predicting consumers’ potential needs and willingness to pay. While sellers

tout the benefits of these tags in enhancing services, those with market power can exploit

these tags to segment the market and engage in price discrimination. This practice can be

particularly harmful to consumers when sellers hold a monopoly. Consequently, scholars

and competition authorities have proposed the prohibition of price discrimination as a

means to safeguard consumers.1

Recent advancements in privacy protection have prompted a novel approach to regu-

lating market power that surpasses traditional methods. This approach revolves around

empowering consumers to strategically select their market segments. To uphold consumers’

right to be forgotten, the European Union (General Data Protection Regulation) and China

(Internet Information Service Algorithmic Recommendation Management Provisions) have

instituted regulations allowing consumers to remove their labels.2 In a more radical move,

an exposure draft in China even allows consumers to freely modify their tags.3 In addition

to ongoing regulatory debates, real-time free editing is already a reality. For example,

users on Instagram, Pinterest, or Tiktok can change the channels they join or accounts

they follow, impacting the prices of products offered in the embedded online shops. Clearly,

rational consumers will navigate between segments in search of better prices, thereby po-

tentially shielding themselves from price discrimination.

While data regulations equip consumers with a tool for self-protection, are these mea-

sures sufficient? Considering consumers’ decentralized, self-interested, and insignificant

nature, can they be effectively protected against a monopolist? To address this question,

we build a model to explore the welfare implications when consumers can freely choose

1For example, in July 2021, the State Administration for Market Regulation of China released an
exposure draft of the Provisions on Administrative Penalties for Price Violations, which prohibits price
discrimination in Article 4. It is the latest update since 2010.

2All iOS apps on the App Store are required to offer an in-app account deletion option by July 30, 2022
(see https://developer.apple.com/support/offering-account-deletion-in-your-app). Moreover,
all iOS apps should let people use them without a login (see App Store Review Guideline 5.1.1(v) in
https://developer.apple.com/app-store/review/guidelines/#data-collection-and-storage).

3When the Chinese government drew up its data regulations in 2021, free editing was allowed in the
draft version, indicating that different tag-based markets would be completely circulating. However, this
right was removed when the regulation was promulgated in 2022, remaining the right to erase tags only.
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their tags, known as identity management (Chen, Choe and Matsushima, 2020). Tags are

assumed to be arbitrarily editable for four reasons: (i) it is an existing proposal in China;

(ii) it is an acceptable approximation to the partial erasure mandated by the Right to Be

Forgotten;4 (iii) it is in line with the fact that tags now describe consumers’ taste, which

would not violate any restriction about providing fake information;5 (iv) more importantly,

it is a theoretical limit case with complete freedom as consumers’ data protection is im-

proving. Initially, the seller can charge different prices in each tag-based market. However,

if tags are easily modified, consumers may find it advantageous to deviate from the current

market by manipulating their tags to obtain a more favorable price.

To gain insights into consumers’ strategic behavior in online markets, we introduce the

concept of stable market segmentation to lay the decentralized foundation for market seg-

mentation.6 Given that consumers often communicate with their friends/relatives/neigh-

bors in social networks and through online review systems or chat groups before making

their market choices7, we define a market segmentation as stable if no group of consumers

has an incentive to deviate. In this paper, our primary objective is to study the exis-

tence and potential welfare consequences of stable market segmentation. Specifically, do

consumers benefit from a stable market segmentation compared to a scenario where they

cannot edit their tags? Can the monopolist obtain a higher profit than in a uniform

monopoly? Is every stable segmentation considered Pareto-improving over the outcome of

a uniform monopoly?

Now we describe our model in detail. We consider a monopolistic producer who sells

a homogeneous product to a continuum of consumers, each having a unit demand. The

4The Right to Be Forgotten allows consumers to refuse discriminatory pricing by removing all labels.
However, consumers may act more strategically by deleting specific dimensions of labels or only part of
purchase history. Additionally, consumers may create additional accounts or invite family members and
friends to purchase the item in their accounts to obtain lower prices. This suggests that different markets
are circulating rather than a simple binary choice between original and anonymous markets.

5Since tags used in online systems are often subjective rather than objective, it is impossible to verify
the authenticity of tags. For example, some consumers may be tagged because they like products in red.
He can change the tag to indicate that he loves green now. This change cannot be punished if we forbid
fake information.

6In contrast with studies wherein the producer passively accepts the segmentation or those focusing on
the segmentation decision made by the central planner (see Bergemann, Brooks and Morris (2015) for an
example), our framework provides a new perspective by studying consumer decisions, which is essential but
ignored in online markets. Moreover, Peivandi and Vohra (2021) examines the possibility of segmentation
induced by competing mechanisms.

7When a consumer finds an arbitrage opportunity, he can tell his friends/relatives/neighbors in his social
network. Hence, a group of consumers would deviate together. Moreover, customers often communicate
with each other using Amazon’s product review system before purchasing. Similarly, millions of WeChat
chat groups exist to exploit loopholes to acquire various goods at incredibly low prices. Data cooperatives,
such as Data Commons, are another example of consumers coordinating with each other.
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producer offers different take-it-or-leave-it prices in each market, while consumers have

their reservation prices. The game begins with a tag editing process, in which consumers

simultaneously select their tags to form tag-based segmentation. Equivalently, tags can be

assigned by the producer or a third party such that consumers are incentive-compatible.

Once the segmentation is realized, tag editing is shut down, and the producer observes

the value distribution and chooses the minimum optimal price in each market, breaking

ties in favor of consumers. Subsequently, consumers make their purchasing decisions based

on the prevailing prices. We assume that consumers are rational in forecasting the prices

for any market segmentation. A segmentation is stable in the tag-editing stage if no

group of consumers can all derive strictly higher utility by modifying their tags. Here,

a modification can change market prices since sellers online typically adopt algorithmic

pricing, and consumers are rational in realizing this fact.

We begin by demonstrating the existence of stable segmentation since no segmentation

at all is always stable. Any deviation must create a new market, which is not profitable

for the consumer with the lowest valuation within the deviation group. We then charac-

terize the welfare consequences of all stable segmentation. We show that producer surplus

remains fixed at the uniform monopoly profit. Meanwhile, consumer surplus can range

from the uniform monopoly surplus to the maximum consumer surplus attainable under

arbitrary segmentation (also known as the buyer-optimal outcome). Our results can be

shown by construction, as explained below.

Besides the uniform monopoly outcome, we also know that the buyer-optimal outcome

is achievable. To implement this extreme outcome, we can iteratively partition the aggre-

gate market into several extremal markets, where every valuation on the support is optimal

(Bergemann, Brooks and Morris, 2015). The producer merely charges the minimum val-

uation in each market. Prices in extremal markets are sensitive to entry, which enables

stable market segmentation to have different prices for different markets.

With the above two attainable outcomes, we cannot immediately conclude that any

outcome in between is feasible since a convex combination of stable market segmentation

may not necessarily be stable. However, we can construct a family of stable segmentation

to circumvent the difficulties. In particular, we start with the segmentation that imple-

ments the buyer-optimal outcome mentioned above. We then merge markets with the

highest prices to create a new market with a share equal to a parameter between zero

and one. Assuming that the critical market can be proportionally divided, the consumer
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surplus in the construction is continuous in the parameter. Moreover, two extreme cases

of this construction correspond to the uniform monopoly and buyer-optimal outcomes,

respectively. Thus, by continuity, any consumer surplus in between can be obtained.

Our analysis also reveals that prices in any stable segmentation cannot exceed the

uniform monopoly price. This result implies that price discrimination is Pareto-improving

compared to the uniform monopoly. Traditional economic theory suggests that third-degree

pricing discrimination has mixed effects on consumers, with some benefiting and others

losing compared to the uniform monopoly. Our results challenge this view and show that,

when consumers are armed with a tag-editable policy, third-degree price discrimination can

benefit all consumers. These insights defend against the criticism that price discrimination

by a monopolist harms consumers (at least in part).

We further provide necessary and sufficient conditions for a segmentation to be stable,

which we consider an important technical contribution. Since there are infinite potential

deviation possibilities, we cannot validate a stable segmentation even with a simple struc-

ture. For example, halving the aggregate market into two identical markets may result

in an unstable segmentation. Thus, a simplified condition for stability is extraordinarily

important:8 If a segmentation is unstable, an inflow market must exist such that some con-

sumers from other markets find it better to enter this market jointly.9 The stable condition

is thus excluding all such possibilities through linear programming.

Although previous studies have acknowledged the buyer-optimal outcome,10 a key ques-

tion remains how can it be implemented without an omniscient central planner? We show

that social-optimal stable segmentations not only exist but are also buyer-optimal. There-

fore, our analysis clarifies that empowering decentralized consumers to edit their tags can

implement the centralized optimal solution. Moreover, we raise a geometrical method that

fully characterizes every segmentation that satisfies both stability and social/consumer

optimum, which is also a technical contribution.

Our findings have important implications for E-commerce, where data trust or online

platforms act as mediators of individual data (MID)11 or market designers for bilateral

trade, caring about both producer and consumer surplus. As stable market segmentation

8Finding feasible collusion is extremely hard (NP-hard in the theory of computational complexity) in
many situations, such as voting (Davies et al., 2014; Walsh, 2011).

9This simplified condition exhibits a polynomial time verification for stability or finding incentive-
compatible group manipulations (if it exists).

10See Bergemann, Brooks and Morris (2015); Roesler and Szentes (2017) for examples.
11For more discussion about MID, see A Blueprint for a Better Digital Society by Jaron Lanier and E.

Glen Weyl in https://hbr.org/2018/09/a-blueprint-for-a-better-digital-society.
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is generally not unique, the mediator may choose the desirable segmentation for a broader

business model or social responsibility. The desirable market outcome is uniquely pinned

down at the buyer-optimal outcome due to legally mandated tag editing. However, if tag

editing is not enforced, multiple social-optimal welfare consequences (other than the buyer-

optimal outcome) can be considered by the mediator (Bergemann, Brooks and Morris,

2015). Hence, tag editing protects consumers from the mediator. Our paper provides

algorithms that enumerate each socially optimal stable segmentation, allowing the mediator

to easily segment the market according to our method.

Finally, we draw attention to the similarities and differences between tag editing and

ex-post arbitrage. Both mechanisms can prevent monopolistic exploitation of consumers.12

However, for regulators or market designers, tag editing is more efficient than facilitating

post-purchase arbitrage in the presence of third-degree price discrimination. This is be-

cause, in the case of frictionless arbitrage, the market outcome boils down to the uniform

monopoly, restricting consumer surplus at the uniform monopoly level. In contrast, tag

editing can favor consumers without hurting the monopolist.

Related Literature

Our work springs from two strands of literature. First, our paper primarily belongs

to the literature studying the welfare consequences of price discrimination (e.g., Aguirre,

Cowan and Vickers (2010) and Cowan (2016)). In a seminal paper, Bergemann, Brooks

and Morris (2015) characterizes all possible welfare consequences in third-price discrimi-

nation with exogenous segmentation. The shaded triangle in Figure 1 depicts all available

surplus pairs, in which A marks the uniform monopoly outcome and C marks the buyer-

optimal segmentation.13 Using their terminology, we show that any possible consequence

lies between A and C if the market segmentation is endogenized by decentralized con-

sumers. Additionally, Ichihashi and Smolin (2023) investigate how the surplus triangle

shrinks when more real-world restrictions are added in Bergemann, Brooks and Morris

(2015). Yet, they assume that the producer has private information unknown to the cen-

tral designer, which differs from ours.

The market segmentation problem analyzed in Bergemann, Brooks and Morris (2015)

12If consumers myopically recognize that prices will not change (instead of updating prices fully ratio-
nally) after a deviation, only the uniform monopoly outcome is stable. This coincides with the situation
allowing ex-post arbitrages but forbidding consumers’ circulation.

13Point B marks the first-degree price discrimination outcome, in which consumers with the same
valuations are grouped. Point D marks the outcome where social welfare is minimized.
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Figure 1: Surplus Triangle

can also be viewed as an information design problem with a single consumer. Then, Roesler

and Szentes (2017) study the problem where the buyer has a prior value distribution and

designs a signal structure to learn the distribution. Condorelli and Szentes (2020) further

endogenize the selection of value distribution. However, these studies are limited in their

scope to a single seller and a homogeneous product.14 To complement these studies, we

incorporate multiple strategic consumers, endogenizing the market segmentation decision,

which has not been explored in the literature to our knowledge.

Second, this paper is also linked to the literature on strategic consumers. One main-

stream of literature assumes repeated purchases from a monopolist. In such behavior-

based price discrimination scenarios, the monopolist obtains information about consumers

through their purchase history, and consumers act myopically or strategically against the

monopolist (Fudenberg and Tirole, 2000; Gehrig and Stenbacka, 2007; Shen and Villas-

Boas, 2018; Bonatti and Cisternas, 2020).15 Acquisti and Varian (2005) argues that pur-

chase history may harm consumers in later periods, forcing them to protect their privacy.

Chen and Zhang (2009) consider strategic consumers seeking the lowest price when facing

dynamic pricing. Our paper differs structurally from those studies, as strategic consumers

in our model make only a single purchase decision, while their strategic feature arises from

their interaction with other consumers. In contrast, consumers in behavior-based price

discrimination are strategic for their forward-looking manners.

The strategic concerns of consumers are also present in their voluntary disclosure de-

14See Ichihashi (2020); Deb and Roesler (2021); Haghpanah and Siegel (2023a, 2022) for examples of
bilateral trade models with multiple products; and Armstrong and Zhou (2022); Belleflamme, Lam and
Vergote (2020); Elliott et al. (2021); Chen, Choe and Matsushima (2020) for examples with multiple
(mostly two) strategic and competitive producers.

15See the detailed survey conducted by Fudenberg and Villas-Boas (2006).
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cisions before the purchase. Sher and Vohra (2015) consider that each consumer privately

belongs to multiple segments. However, they can credibly disclose their segment, limit-

ing the monopolist’s power. Ali, Lewis and Vasserman (2023) investigate the incentive

to voluntarily disclose hard evidence (exact information or range about personal prefer-

ences), which builds the market segmentation. Hidir and Vellodi (2021) study the soft

information about consumers’ valuations and introduce the incentive-compatible market

segmentation. In their settings, the strategic side of consumers is manifested by their deci-

sions on their data, which indirectly influences market segmentation. While in ours, each

consumer directly chooses the market segment.

In a cooperative setting, Haghpanah and Siegel (2023b) study the formation of market

segmentation by consumers. As a result, the market they analyzed must be efficient, the

producer surplus may arise, and the outcome may not be Pareto-improving compared with

the aggregate market. In contrast, the market segmentations analyzed in our paper may

be inefficient, the producer surplus is fixed, and the outcome is always Pareto-improving.16

The rest of the paper is organized as follows. Section 2 sets up a general framework

for tag-editable market segmentation. Section 3 conducts analysis on stable market seg-

mentations. Section 4 further explores those stable and social-optimal segmentations. In

Section 5, we illustrate several possible extensions and discuss the main implications of our

results. Section 6 concludes the paper. All technical proofs are relegated to the Appendix.

2 Model

We establish the basic model of market segmentation in Section 2.1 and introduce the

tag-editable framework in Section 2.2.

2.1 Basic Setup and Market Segmentation

A monopolistic producer sells a homogeneous product to a continuum of consumers.

Without loss of generality, the total mass of the consumers is normalized to one, and the

constant marginal cost is normalized to zero. The consumers’ willingness-to-pay for the

product can take K positive values in V ≜ {v1, v2, · · · , vK} with vk−1 < vk.

A market x is a K-dimensional vector, where xk denotes the mass of consumers with

16Haghpanah and Siegel (2023b) and our paper independently adopt the name “stable market segmen-
tation” in February 2022. Despite the similar name, the two notions of stability have large differences.
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value vk. Since each consumer will purchase the good if his valuation is greater than or

equal to the price,
∑K

i=k xi is the demand at any price in the interval (vk−1, vk]. Pricing vk

is optimal in x if vk
∑K

i=k xi ≥ vj
∑K

i=j xi for all j ∈ {1, 2, · · · , K}.

There is an aggregate market x∗ with ∥x∗∥1 = 1. A market segmentation σ(x∗)={x1, · · · ,xt}

divides the aggregate market x∗ into finite markets such that
∑t

i=1 xi = x∗. Since mar-

kets within a segmentation can be identical, σ may contain repeated elements. The set of

possible segmentations for x∗ is denoted by {σ
∣∣|σ| <∞,∑xi∈σ(x∗) xi = x∗}.

The producer offers a take-it-or-leave-it price to maximize the profit in each market.

The deterministic pricing strategy, denoted by ϕ, maps every market to a non-negative

price. If multiple prices are optimal, selecting the minimum breaks the tie by maximizing

consumer surplus. This rule, denoted by ϕmin, is called minimum optimal pricing rule.17

Assumption 1 (Pricing algorithm). The producer adopts the minimum optimal pricing.

Let u, π, and w denote the consumer surplus, producer surplus, and total surplus,

respectively. For aggregate market, we denote v∗ = vi∗ = ϕmin(x∗) as the minimum optimal

price. Under the uniform monopoly, producer surplus is π∗ = v∗
∑K

j=i∗ x
∗
j and consumer

surplus is u∗ =
∑K

j=i∗(vj−v∗)x∗j . The maximum feasible social welfare is w =
∑K

i=1 vix
∗
i , in

which all consumers purchase the good. Under the segmentation σ(x∗), producer surplus

is
∑

x∈σ ϕ
min(x)

∑
j:vj≥ϕmin(x) xj; consumer surplus is

∑
x∈σ

∑
j:vj≥ϕmin(x)(vj − ϕmin(x))xj;

and the social welfare is
∑

x∈σ
∑

j:vj≥ϕmin(x) vjxj. All possible surplus pairs (u, π) that are

attainable by some segmentation are summarized in Lemma 1(i), which is often called the

surplus triangle.

Lemma 1. (i) (Bergemann, Brooks and Morris, 2015) There exists a segmentation and

associated pricing rule ϕ to implement (u, π) if and only if u ≥ 0, π ≥ π∗, and u+ π ≤ w.

(ii) Given ϕmin, outcomes with u ∈ [0, u∗) and π = π∗ are no longer attainable.

Lemma 1(ii) suggests that fixing the pricing rule at ϕmin has a minor influence on

welfare consequences for the general market segmentation problem.18 Hence, Assumption 1

is considered an acceptable assumption, provided that a deterministic pricing strategy is

adopted to avoid ambiguity in consumers’ beliefs on market prices.

17Barreto, Ghersengorin and Augias (2022) also assume that the monopolist charges at each market the
smallest one among the optimal prices in that market. By contrast, some works (e.g., Bergemann, Brooks
and Morris (2015)) allow the pricing rule to be randomized and break tie arbitrarily, which makes strategic
consumers unable to form unambiguous beliefs on pricing.

18Compared to the surplus triangle, the set of unattainable outcomes caused by the minimum optimal
pricing rule has measure zero.
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2.2 Tag-editable Framework

In the remainder of this section, we model market segmentation with the presence of

strategic consumers. The introduction of strategic consumers to the price discrimination

framework is inspired by the manipulable tag system online. Unlike the conventional

literature (Bergemann, Brooks and Morris, 2015), the market partition in our tag-editable

market segmentation framework is driven by consumers’ incentives.

2.2.1 Game and Timeline

Our game involves a tag-editing stage and an implementation stage. In the first stage,

consumers simultaneously choose their tags to form a tag-based market segmentation.

Alternatively, we can assume that tags are assigned by the producer or a third party such

that consumers are incentive-compatible with the assignment.

In the second stage, tags are not editable. The producer sets prices in all markets to

implement third-degree price discrimination, which, in reality, is often realized automati-

cally by the pricing algorithm. Meanwhile, each consumer purchases the good if and only

if his reservation price is no less than the price. Figure 2 summarizes our timeline.

Producer

Consumer

Tag-editing Stage

Segmentation σ(x∗)

Implementation Stage

Purchase if v ≥ ϕmin(x)

Pricing ϕmin(x),∀x ∈ σ(x∗)

Figure 2: Timeline

Given the algorithmic pricing rule, consumers act strategically when editing their tags.

To this end, we introduce the concept of stable market segmentation in the following.

2.2.2 Stable Market Segmentation

In defining stable segmentation, consumers can form a group and change their tags

collaboratively. A group of consumers is denoted by y =
∑t

i=1 yi, where t is the number

of markets, yi collects consumers from market xi who want to deviate, and 0 ≤ yi ≤ xi.

Notice that the consumer with value vk in market x has the utility max
{
vk − ϕmin(x), 0

}
.

Definition 1 (Stable). A segmentation σ(x∗) = {x1, · · · ,xt} is stable, if for any group

of consumers y, there is no decomposition y =
∑t

i=1 y
′
i such that all consumers in y have

strictly higher utility in the segmentation {x1 − y1 + y′
1, · · · ,xt − yt + y′

t} than in σ(x∗).
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In the definition, we require each group to have a positive measure, ∥y∥1 > 0. This

definition is quite general since we impose no restrictions on the composition of y. The

group can be small or large and can contain consumers with different valuations and

from different markets. Following previous studies, a group of consumers will approve the

deviation if all consumers obtain a higher utility.19

We assume the number of tags or markets is given, and any group of consumers cannot

build a new market. This assumption is not a loss of generality since the consumer with

the lowest valuation within the group must have zero utility by establishing a new market.

Hence, building a new market can be considered, but consumers will find it meaningless.

The concept of stable segmentation can be easily extended to situations where the

consumer can only delete his account instead of moving to other markets. Then, every

welfare consequence achievable by Lemma 1 is attainable by stable segmentation.20

To facilitate our analyses, we introduce a relaxed concept called weak-stable, which is

only robust to a subset of possible deviations. Here, we consider a small group of identical

consumers from the same market. The measure of them, denoted by ε, is positive but

arbitrarily close to zero.

Definition 2 (Weak-stable). A segmentation σ(x∗) = {x1, · · · ,xt} is weak-stable, if for

a small group of consumers with the same valuation in market xi, it is not profitable

for them to deviate to any other market.

By definition, every stable segmentation must be weak-stable. Then, the concept of

weak-stable helps us provide bounds for the welfare consequences of stable segmentation.

3 Stable Market Segmentation

We now characterize possible welfare consequences of stable market segmentation, as

in Section 3.1. As the key step, we show that pricing the uniform monopoly price must

be optimal in all markets within any weak-stable segmentation. This property helps char-

acterize the bounds of welfare consequences. Meanwhile, these bounds can be achieved

by construction and are thus tight. Compared with the uniform monopoly, a stable seg-

mentation can raise the consumer surplus without hurting the producer. Moreover, no

19See Barberà, Berga and Moreno (2016) for an example.
20Consider an arbitrary segmentation with all consumers logging in. The only option for consumers is

account deletion, which automatically builds a new market, reveals the reservation price, and leads to a
zero payoff. Hence, any group of consumers has no incentive to delete their account, implying stability.
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individual consumer is worse off, indicating a Pareto improvement. Section 3.2 further

provides necessary and sufficient conditions for a segmentation to be stable.

3.1 Welfare Consequences

In the first half of this subsection, we seek to find a necessary condition for weak-stable

segmentation. Then this condition is also necessary for stable segmentation. Before the

formal investigation, we make an observation, which plays a vital role in our analysis.

Observation 1. limε→0+ ϕ
min(x+ εek) is optimal in market x for any k. In particular,

• when vk < ϕmin(x), limε→0+ ϕ
min(x+ εek) = ϕmin(x);

• when vk ≥ ϕmin(x), limε→0+ ϕ
min(x + εek) is the greatest optimal price in x that is

no larger than vk.

Proof. The proof is relegated to Appendix A.

Consider a small group of consumers entering the market x. Observation 1 states that

the resulting price in any market after an entry must be optimal before the entry. If pricing

v is not optimal in market x before the entry, pricing v must be strictly worse than pricing

ϕmin(x) by a positive size. Meanwhile, an entry can increase the revenue of pricing v, at

most, infinitesimally. Hence, v cannot be optimal after the entry.

Among all possible stable segmentations, one simple market segmentation is the aggre-

gate market itself (or called no segmentation), as shown in Remark 1.

Remark 1. σ(x∗) = {x∗} is stable.

Remark 1 further implies that stable segmentation always exists.21 If consumers are

bounded rational such that they cannot forecast other markets’ prices after any deviation,

only segmentations with uniform prices can be stable.

However, rational consumers can recognize that prices may change after a deviation.

Then, whether a stable segmentation exists with different prices in different markets?

Suppose ϕmin(xi) < ϕmin(xj). For the market segmentation to be stable, we need it to

be weak-stable. Then, a small group of consumers with the same valuation from xj has

no incentive to enter xi. The price in the ith market after the entry must be at least

ϕmin(xj) to rule out profitable deviations, implying that xi should be somewhat sensitive.

21The segmentation is always weak-stable if prices are uniform. However, the segmentation may be
unstable even if prices are uniform. See Example 2 later.

12



Straightforwardly, xi should have multiple optimal prices that includes ϕmin(xj), as shown

in Lemma 2. In fact, the price in xi will be exactly ϕmin(xj) after such a deviation.

Lemma 2. If segmentation σ(x∗) = {x1, · · · ,xt} is (weak-)stable and there exist two

markets with different prices, ϕmin(xi) < ϕmin(xj), then ϕ
min(xj) is also optimal in market

xi.

Proof. The proof is relegated to Appendix A.

Lemma 2 points out the possibility of going beyond the uniform monopoly outcome.

The restrictions, however, are quite strict for a stable segmentation to have market-

dependent prices. After eliminating unstable segmentations by Lemma 2, we rigorously

demonstrate all possible welfare consequences for stable segmentations in Theorem 1.

Theorem 1. The surplus of the producer and consumers (π, u) can be achieved by the

stable segmentation if and only if π = π∗ and u ∈ [u∗, w − π∗]. No consumer is worse off

compared with the uniform monopoly outcome.

We start with necessity. Consider a stable segmentation σ(x∗) = {x1, · · · ,xt}. Lemma 3,

the key step for necessity, states that the maximum price across all markets (max
{
ϕmin(xi)

}t

i=1
)

must equal to the uniform monopoly price v∗.

Lemma 3. For any stable segmentation σ(x∗) = {x1, · · · ,xt}, max
{
ϕmin(xi)

}t

i=1
= v∗.

Proof. The proof is relegated to Appendix A.

Market 1

ϕmin(x1)

Market 2

· · ·ϕmin(x2)

Market t− 1

ϕmin(xt−1)

Market t

ϕmin(xt)

ϕmin(xt) · · ·ϕmin(xt) ϕmin(xt) ϕmin(xt)

v∗ · · ·v∗ v∗ v∗

(i) ϕmin(xt) is optimal in all markets. ⇒ π = π∗ (≥ and ≤).

(ii) ϕmin(x∗) is optimal in all markets. ⇒ p = ϕmin(x∗) (≥ and ≤).

Figure 3: Why max
{
ϕmin(xi)

}t

i=1
= v∗?

Figure 3 graphically illustrates the main logic to prove Lemma 3. The three panels rep-

resent three different pricing strategies. In the upper panel, the producer charges ϕmin(xi)
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in market i. Without loss of generality, we assume ϕmin(x1) ≤ ϕmin(x2) ≤ · · · ≤ ϕmin(xt).

The producer surplus, in this case, is denoted by π. In the middle panel, the producer

charges a uniform price ϕmin(xt) in all markets. Denote the producer surplus in this case

by π′. In the lower panel, the producer charges the minimum optimal uniform price v∗ in

all markets and obtains the uniform monopoly profit π∗.

• We first argue that the three pricing strategies yield the same producer surplus. By

Lemma 2, ϕmin(xt) should be optimal in every market. Thus, the pricing strategies

in the upper and middle panels result in the same producer surplus, that is, π = π′.

Evidently, π′ ≤ π∗, since the latter is the uniform monopoly profit and the former is

the profit by charging a uniform price ϕmin(xt). Moreover, from Lemma 1, we know

that π∗ ≤ π. Thus, we must have π = π′ = π∗.

• Now, we argue that ϕmin(xt) = v∗. On the one hand, since π′ = π∗, ϕmin(xt) must

be an optimal uniform price, suggesting that it should be greater than or equal to

v∗. On the other hand, v∗ should be optimal in every market within σ(x∗).22 In

particular, v∗ should be optimal in market t. Hence, v∗ cannot be strictly lower than

ϕmin(xt).

Lemma 3 reveals one main insight: Circulating consumers enabled by data regulations

prevent the producer from pricing higher than v∗. All results shown in Theorem 1 are

direct implications of Lemma 3.

• Producer surplus. Since v∗ is optimal in all markets within segmentation σ(x∗),

the producer surplus is unchanged if charging v∗ to all markets, resulting π = π∗.

• Pareto improvement. No consumer faces a higher price than v∗.

• Consumer surplus. By Pareto improvement, consumer surplus is at least the

uniform monopoly outcome, u ≥ u∗. Meanwhile u ≤ w − π∗ by Lemma 1.

For sufficiency, we construct stable segmentations to realize every (π∗, u) with u ∈

[u∗, w−π∗]. For one extreme case, no segmentation can achieve u = u∗. The other extreme

case, namely u = w − π∗, is realized by greedy procedures we will explain immediately.

The constructive approach necessarily requires non-uniform pricing, indicating that

multiple optimal prices may exist in some markets (Lemma 2). Since we seek to implement

the extreme case with u = w − π∗, we enable multiple optimal prices in an extreme way:

For every market within the segmentation, the producer is indifferent between charging

22Suppose not. Then, there exists a market i such that charging v∗ yields a strictly smaller profit than
charging ϕmin(xt). Since π′ = π∗, there must be a market j such that charging v∗ yields a strictly larger
profit than charging ϕmin(xt). This contradicts the fact that ϕmin(xt) is optimal in every market.
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any price inside the support. This trenchant requirement coincides with the segmentation

based on extremal market (Bergemann, Brooks and Morris, 2015).23

For a set of valuations S ⊆ V , the extremal market xS(a) with total share being a, is

defined as

xSi (a) =

 0 vi ̸∈ S

aminS
(

1
vi
− 1

µ(vi,S)

)
vi ∈ S

where µ(vi, S) denotes the smallest element in S higher than vi, and 1/µ(maxS, S) = 0.

We can verify that the producer is indifferent to charging any valuation that appears in

an extremal market.24 Hence, extremal markets are sensitive to entry and helpful for

constructing stable segmentations.

An extremal market also prevents the entry of a group of outside consumers who have

a common value in the support, as formally stated in Remark 2.

Remark 2. Consider a group of consumers whose valuations all belong to S. Some of

them would receive zero utility when joining xS(a).

With these good properties in mind, we generate markets iteratively. Write supp for the

support of a distribution. First, pack as many consumers as possible into an extremal mar-

ket xsupp{x∗}(a1) until running out of consumers with some valuation. The residual market

is x(1) = x∗−xsupp{x∗}(a1). Second, pack as many consumers as possible from x(1) into an

extremal market xsupp{x(1)}(a2). The residual market is thus x(2) = x(1) − xsupp{x(1)}(a2).

In each round k, we will obtain an extremal market xsupp{x(k−1)}(ak) and a residual mar-

ket x(k). This iteration is terminated when the remaining market becomes 0. Since

|supp{x(i+1)}| < |supp{x(i)}|, there is at most K iterations, and the resulting segmen-

tation is called greedy segmentation σGreedy(x∗) = {xGreedy
1 , · · · ,xGreedy

t }. The greedy seg-

mentation reaches u = w − π∗, and more importantly, is stable.

Remark 3. The greedy segmentation σGreedy(x∗) is stable.

For sufficiency of Theorem 1, it remains to construct a family of stable segmenta-

tions that can achieve any intermediate u ∈ (u∗, w − π∗) based on greedy segmentation

σGreedy(x∗). Given α ∈ [0, 1] and k ∈ {1, · · · , t − 1}, we merge those markets that are

23Bergemann, Brooks and Morris (2015) construct two segmentations to implement u = w − π∗: a
segmentation based on direct market and a segmentation based on extremal market. In this paper, we
formally prove the stability of the latter one. However, the former generates an unstable segmentation.

24Charging any price in S will result in a profit of aminS.
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generated later in greedy procedures to obtain a new segmentation, denoted by σα,k(x∗):xGreedy
1 , · · · ,xGreedy

k−1 , αxGreedy
k︸ ︷︷ ︸

Extremal Markets

,

t∑
j=k+1

xGreedy
j + (1− α)xGreedy

k︸ ︷︷ ︸
Last Market

 .

Notably, the first k markets are extremal. Meanwhile, the minimum optimal price of the

last market is v∗, since (i) v∗ is optimal in every market generated by the greedy procedures,

and (ii) v∗ is the minimum optimal price in xGreedy
t (Lemma 3).25

Remark 4. The constructed segmentation σα,k(x∗) is stable.

To show that the constructed segmentation is stable, we iteratively consider the market

xGreedy
i from i = 1 to i = k. In the ith iteration, we find that no consumer wants to (i)

deviate from xi to markets with higher indices, since the price in xi is the minimum

valuation among later generated markets; (ii) deviate to xi from markets with higher

indices, since all consumers in later markets have their valuations on the support of xi

(Remark 2). Figure 4 graphically illustrates all k rounds of iterations.

FROM

TO

Last Market

αxGreedy
k

xGreedy
k−1

· · ·

xGreedy
2

xGreedy
1

xG
1 xG

2 · · · xG
k−1 αxG

k Last

1st round of iteration

2nd round of iteration

· · ·

k − 1th round of iteration

kth round of iteration

Figure 4: Iteration Process of Remark 4

Finally, we show that any intermediate u ∈ (u∗, w−π∗) can be achieved. Let Ψ denote

the share of the last market, Ψ(σα,k(x∗)) =
∥∥∥∑t

j=k+1 x
Greedy
j + (1− α)xGreedy

k

∥∥∥
1
. Given any

25To see why the price of the last market is v∗, it suffices to show that (I) pricing any v < v∗ is strictly
worse than v∗ and (II) pricing any v > v∗ is not better than v∗. (I) holds since v∗ is optimal in all markets

and any v < v∗ is strictly worse than v∗ in xGreedy
t since v∗ = ϕmin(xGreedy

t ). (II) holds immediately from
(i).
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ψ ∈
[
∥xGreedy

t ∥1, 1
]
, there exists a unique σα,k(x∗) such that Ψ(σα,k(x∗)) = ψ. Meanwhile,

the consumer surplus is continuous (and monotonic) in ψ.26 Since the consumer surplus is

w − π∗ when ψ = ∥xGreedy
t ∥1 and u∗ when ψ = 1, all consumer surplus within [u∗, w − π∗]

can be achieved. This ends the proof of Theorem 1.

So far, we have gained the first insight into the structure of stable segmentations.

All constructed stable segmentations consist of a market with a uniform monopoly price,

namely the last market, and some discount markets. Defining the last market as the

anonymous market, we can interpret the above market structure intuitively in a loose way.

The anonymous market includes those consumers who exercise the right to be entirely

forgotten. These consumers refuse to provide any information, thus facing the uniform

monopoly price. Meanwhile, consumers in each discount market provide some information

to get preferential treatment.

For a more rigorous exposition of our above interpretation, consider the following refine-

ment rule on stable segmentations about the information-price tradeoff. For each segmen-

tation, exactly one of the markets should be marked as the anonymous market, containing

those consumers who delete their accounts. Besides the condition mentioned in Defini-

tion 1, we introduce the following no-logout condition, featuring the incentive to delete the

account: If a group of consumers can purchase the good at a weakly lower price without

login, they will do so to prevent information leakage.27

Definition 3 (No-logout Condition). Assume one market within the segmentation repre-

sents the anonymous market, denoted by xt. Consumers with a successful trade outside

xt cannot deviate to xt to face a weakly lower price.

After imposing the no-logout condition as a refinement criterion, all surviving stable

segmentations include exactly one market with price v∗, namely the anonymous market.

In fact, for any stable segmentation without refinement, merging all markets with price

v∗ and calling it the anonymous market will result in a stable segmentation satisfying the

no-logout condition. Therefore, welfare consequences remain unchanged before and after

the refinement. The no-logout condition is introduced merely for better interpretation.

26As ψ increases by dψ, those dψ consumers, once in the second last market αxGreedy
k , face price v∗

instead, while other consumers face the same price as before. Hence, the decline of consumer surplus is
solely influenced by those changed consumers. Since changed consumers are distributed proportional to

xGreedy
k , the loss of consumer surplus is bounded by dψ

(
v∗ − ϕmin(xGreedy

k )
)
: Continuity holds.

27We do not replicate this condition on consumers without a purchase for two reasons. On the one hand,
information leakage primarily occurs during a transaction. On the other hand, only the result with no
segmentation survives if we impose restrictions on consumers with no trade.
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For illustration purposes, we use the following example to explain our results on welfare

consequences (Theorem 1).

Example 1. There are three valuations V = {1, 2, 3}, with equal proportions. Thus,

K = 3, vk = k, and x∗ = (1
3
, 1
3
, 1
3
). It is easy to obtain that w = 2, π∗ = 4

3
and u∗ = 1

3
.

If the producer wants to impose first-degree price discrimination, the aggregate market

can be split as x1 = (1
3
, 0, 0),x2 = (0, 1

3
, 0),x3 = (0, 0, 1

3
). Here, social welfare is maximized

and fully extracted by the producer. However, if consumers can change their tags and

reallocate themselves into different markets, this segmentation is no longer stable.

The greedy segmentation is shown in Table 1. Since all consumers purchase the product,

social welfare is maximized. Meanwhile, the producer surplus equals π∗, implying that

the consumer surplus reaches the buyer-optimal level u = w − π∗. Hence, this example

thus numerically illustrates how data regulations transfer surplus from the producer to

consumers without hurting social welfare.

If we want to realize u = 1
2
∈ [1

3
, 2
3
] = [u∗, w − π∗], the segmentation is constructed as{

1
2
xGreedy
1 , 1

2
xGreedy
1 + xGreedy

2 + xGreedy
3

}
, where k = 1, α = 1

2
and Ψ = 2

3
.

v1 = 1 v2 = 2 v3 = 3 optimal price(s) ϕmin(·) profit

xGreedy
1

1
3

1
9

2
9

1, 2, and 3 1 2
3

xGreedy
2 0 1

18
1
9

2 and 3 2 1
3

xGreedy
3 0 1

6
0 2 2 1

3

x∗ 1
3

1
3

1
3

2 2 4
3

Table 1: Greedy segmentation of the example market

3.2 Necessary and Sufficient Condition

In the following, we aim to provide necessary and sufficient conditions regarding the

structure of stable segmentations. To begin with, we consider weak-stable segmentations.

3.2.1 Weak-Stable

Recall that Lemma 2 provides a necessary condition for weak-stable segmentation;

however, it is not sufficient. For example, consider an aggregate market x∗ = (1
4
, 1
8
, 5
8
)

with the valuation set V = {1, 2, 3}. The segmentation {x1,x2} with x1 = (1
4
, 0, 1

8
) and

x2 = (0, 1
8
, 1
2
) satisfies Lemma 2. However, the consumer with a valuation of 2 in x2 still

has the incentive to deviate to x1.
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The following proposition provides the necessary and sufficient condition of weak-stable

market segmentation, which can also serve as a tractable verification condition for weak-

stable segmentation. If Proposition 1 fails, the segmentation is not (weak-)stable.

Proposition 1. The segmentation σ(x∗) = {x1, · · · ,xt} is weak-stable if and only if the

following indifference condition holds: if there exist two markets with different prices,

ϕmin(xi) < ϕmin(xj), then for all vk ∈ supp{xj} ∩
(
ϕmin(xi), ϕ

min(xj)
]
, vk is also optimal

in market xi.

Proof. The proof is relegated to Appendix A.

Notice that the necessary condition mentioned in Lemma 2 only requires ϕmin(xj) to

be optimal in market xi. In contrast, to make it sufficient, any valuation on the support

of xj and interval
(
ϕmin(xi), ϕ

min(xj)
]
should also be optimal.

Proposition 1 manifests that a weak-stable segmentation occurs if and only if all con-

sumers with zero utility have no incentives to deviate. The intuition is straightforward as

follows. The necessity part shares a similar logic with Lemma 2: Any movement from a

market xj with a higher price to another market xi with a lower price will immediately

raise the price of xi, provided that the segmentation is weak-stable. For sufficiency, Propo-

sition 1 can be understood from the consumer’s perspective. Observation 1 implies that

the price cannot decrease after an entry. Hence, any consumer merely ignores all markets

with a weakly higher price than (i) the price in his current market or (ii) his valuation. The

consumer with value vk in xj only searches for market xi such that ϕmin(xi) < ϕmin(xj)

and vk > ϕmin(xi). However, min
(
vk, ϕ

min(xj)
)
is also optimal in all those markets that

meet the above criteria, suggesting a non-profitable deviation.

3.2.2 Stable

The set of stable segmentation is a proper subset of weak-stable segmentation. In the

following, we provide an example to illustrate that a weak-stable segmentation may not be

stable.

Example 2. There are three valuations V = {1, 2, 3}, with aggregate market x∗ = ( 6
11
, 1
11
, 4
11
).

The segmentation listed in Table 2 is weak-stable but not stable.

The above segmentation satisfies the indifference condition shown in Proposition 1, it

should be weak-stable. However, it is not stable. All consumers with value 2 in the market
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v1 = 1 v2 = 2 v3 = 3 ϕmin(·) profit

x1
3
11

1
22

2
11

3 6
11

x2
3
11

1
22

2
11

3 6
11

x∗ 6
11

1
11

4
11

3 12
11

Table 2: A weak-stable segmentation but not stable

x2 will be better off after moving to x1. The associated price in market x1 will decrease

to 1, implying that all those consumers are strictly better off.

The above example demonstrates that the set of stable segmentation can be strictly

smaller than weak-stable segmentation. Consequently, the verification condition for stable

segmentation is totally different from weak-stable segmentation.

Proposition 2. The segmentation σ(x∗) = {x1, · · · ,xt} is stable if and only if the follow-

ing no-inflow condition holds: for any market xi ∈ σ(x∗), there is no group of consumers

y ̸= 0 from other markets such that all consumers in y have a strictly higher utility in

market xi + y.

Proof. The proof is relegated to Appendix A.

Unlike weak-stable segmentation, stable segmentation is even impossible to verify di-

rectly through definition, because there are infinite possible groups y. Nevertheless, since

Proposition 2 only specifies a certain class of deviation, a stable segmentation must be

immune to them. Hence, we need only to specify the sufficiency side of Proposition 2.

Sufficiency comes from the negative statement: For any segmentation that is not stable,

we can select a market and find a group of consumers y from other markets such that all

consumers in y have a strictly higher utility.

We can construct a protocol to verify the group stability based on Proposition 2.

1. Select a market x ∈ σ(x∗).

2. Select a target price vk to be reached after deviation.

3. Consumers who can benefit from a deviation to market x must satisfy that (i) valu-

ation is larger than vk and (ii) price of the initial market is larger than vk. Gather

those consumers in z.

4. Verify whether there exists a group of consumers y from z such that the price after

the entry is vk. Mathematically, test whether a group of consumers y ≤ z such that

ϕmin(x+ y) = vk.

5. Repeat Steps 2 to 4 for all possible vk ∈ V .
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6. Repeat Steps 2 to 5 for all markets in σ(x∗).

The above protocol presents an efficient algorithm to certify whether a given segmen-

tation is stable by checking no-inflow conditions for all markets. This can be reduced to a

linear programming problem.28

4 Social-Optimal Stable Segmentation

A segmentation is referred to as buyer-optimal if the consumer surplus equals w − π∗,

which must be social-optimal as well.29 Thus, Theorem 1 reveals that the buyer-optimal

outcome can survive under our framework.

Remark 5. There exists a stable segmentation that implements (π, u) = (π∗, w − π∗).

This observation reveals the positive side of price discrimination in the presence of data

regulations: Allowing price discrimination protects consumers rather than hurts consumers.

Without price discrimination, the producer will adopt the uniform monopoly price, causing

a deadweight loss (equaling to w − π∗ − u∗) that is entirely borne by consumers.

In this section, we will characterize those stable and social-optimal segmentations thor-

oughly. In particular, Section 4.1 shows that weak-stable and stable are identical concepts

for social-optimal segmentations. Section 4.2 presents the common structure of stable,

social-optimal, and direct segmentations, which paves the way for deriving all such seg-

mentations in Section 4.3.

4.1 Equivalence between Weak-Stable and Stable

If we restrict our attention to social-optimal segmentations, the only attainable outcome

through stable segmentation is the buyer-optimal outcome. Any social-optimal outcomes

other than the buyer-optimal outcome must not be stable.

Moreover, not all market segmentations that achieve the buyer-optimal outcome are

stable. Consider two algorithms in Bergemann, Brooks and Morris (2015) that implement

the buyer-optimal outcome. One algorithm generates an extremal segmentation, which is

proved stable by Remark 3. The other algorithm generates an unstable direct segmentation

since the conditions in Proposition 1 are not satisfied in that segmentation.

28In social choice theory, it is intractable to find group manipulation in most social choice functions.
29See Bergemann, Brooks and Morris (2015); Roesler and Szentes (2017); Deb and Roesler (2021) for

works on buyer-optimal outcomes.
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Based on the above considerations, it is necessary to clarify the condition of social-

optimal segmentation to be stable. Although conditions in Proposition 1 and Proposition 2

are still valid, we can find a simpler necessary and sufficient condition. In particular, we

find that weak-stable segmentation and stable segmentation coincide with each other among

those social-optimal outcomes, and that the necessary condition mentioned in Lemma 2 is

now sufficient, as summarized in Proposition 3.

Proposition 3. Consider a social-optimal segmentation σ(x∗) = {x1, · · · ,xt}. The fol-

lowing three statements are equivalent:

(1) σ(x∗) is weak-stable.

(2) σ(x∗) is stable.

(3) σ(x∗) satisfies: ϕmin(xi) < ϕmin(xj) implies ϕmin(xj) is optimal in market xi.

Proof. Since (1) ⇒ (3) is valid by Lemma 2, and (2) ⇒ (1) holds trivially, we need only

to prove (3)⇒ (2). The proof is relegated to Appendix A.

4.2 Markets within a Direct Segmentation

4.2.1 Direct Segmentation

Proposition 4 presents the stable-preserving property of merging markets with the

same price. Merging markets refers to the procedure of replacing xi and xj in the original

segmentation by xi + xj. However, it remains unknown whether the stable-preserving

property holds for non-social-optimal stable segmentation. Our conjecture is positive.

Proposition 4. If segmentation σ(x∗) is stable and social-optimal, and there exists xi,xj

such that ϕmin(xi) = ϕmin(xj), then σ
′(x∗) = σ(x∗)\{xi,xj} ∪ {xi + xj} is also stable.

Proof. The proof is relegated to Appendix A.

Proposition 4 can simplify every segmentation to a direct segmentation.

Definition 4 (Direct Segmentation). A segmentation σ(x∗) is direct, if |σ(x∗)| ≤ K and

ϕmin(x) ̸= ϕmin(x′) for any x,x′ ∈ σ(x∗).

Since the implementation cost of direct segmentation is lower due to fewer markets,

it is more convenient for the market designer to realize stable, social-optimal, and direct

(SSD for short) segmentation.
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4.2.2 Markets within an SSD Market

Proposition 3 clarifies that any weak-stable segmentation is also stable once it is social-

optimal. However, all the above analyses focus on aggregate-level welfare consequences

but not market-specific features. It is unclear whether the various SSD segmentations

have different welfare distributions across all markets. For clarity, we concentrate on direct

segmentations.

For an SSD segmentation σ(x∗) = {x1, · · · ,xt}, we define the revenue profile over

markets as {π1, · · · , πt} where πi is the producer’s profit in market xi, and the price profile

over markets as P (x∗) = {ϕmin(x1), · · · , ϕmin(xt)}. The following proposition provides a

strong result on welfare distributions across markets.

Proposition 5. The price profile {ϕmin(x1), · · · , ϕmin(xt)} and revenue profile {π1, · · · , πt}

are identical for all stable, social-optimal, and direct (SSD) segmentations.

Proof. The proof is relegated to Appendix A.

Realizing that all SSD segmentations share the same price profile and revenue profile,

we can compute them straightforwardly by running the greedy segmentation procedure

mentioned in Section 3.1. By merging all markets with the same price, we can obtain an

SSD segmentation and pin down the price profile and the revenue profile.

The characterization of the price profile and the revenue profile can also be illustrated

geometrically. Define π̂(vi) = vi
∑K

j=i x
∗
j as the revenue function of charging vi ∈ V

uniformly in the aggregate market. Apparently, π∗ = maxvi π̂(vi).

Example 3. There are five possible valuations V = {1, 2, 3, 4, 5}, with probability distri-

bution x∗ = (0.1, 0.3, 0.1, 0.3, 0.2). Thus, π̂(1) = 1, π̂(2) = 1.8, π̂(3) = 1.8, π̂(4) = 2 and

π̂(5) = 1. By definition v∗ = 4 and π∗ = 2.

Figure 5 plots the revenue function of x∗ = (0.1, 0.3, 0.1, 0.3, 0.2) with V = {1, 2, 3, 4, 5}

and its left concave closure. The concave closure of π̂, defined in [v1, vK ], is the smallest

concave function that is everywhere weakly greater than π̂ (Kamenica and Gentzkow,

2011).30 The left concave closure, defined in [v1, v
∗] instead, is a monotonically increasing

segmented linear function with several inflection points where the slope is changed. For

example, the left concave closure shown by the red curve in Figure 5 has one inflection

point v2. The price profile thus contains v1, v
∗ and the inflection point v2 in Example 3.

30Notice that the revenue function is defined on a discrete set V , while the concave closure is defined in
a closed interval [v1, vK ].
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v

π̂(v)

v1 v2 v3 v4 v5

Figure 5: Price Profile

v

π̂(v)

v1 v2 v3 v4 v5
π1

π2

π3

Figure 6: Revenue Profile

Figure 6 illustrates how to find the revenue profile based on Figure 5. Notice that the

left concave closure is a segmented linear function. We can draw the intersection points

for each line segment and the vertical axis, as shown by two blue points in Figure 5.

Hence, we obtain a set of intercept points, including zero, π∗, and every intersection point.

The distance between adjacent intercept points represents the revenue of one market.

Appendix A will explain step-by-step how the price profile shown in Figure 5 and the

revenue profile shown in Figure 5 are generated by the greedy procedures mentioned in

Section 3.1.

4.3 Deriving All Direct Segmentations

Using the optimal price profile, we can derive all SSD market segmentations. Suppose

the optimal price profile is {p1, · · · , pt} ⊆ {v1, · · · , v∗} with v1 = p1 < · · · < pt = v∗. We

define the virtual segmentation for any segmentation such that consumers within [pi, pi+1)

are treated as pi. For Example 3, any virtual segmentation is a decomposition of the virtual

aggregate market x∗
virtual = (0.1, 0.4, 0.5) with Vvirtual = {1, 2, 4}. SSD segmentation exists

uniquely in the virtual aggregate market, denoted by σ̂(x∗
virtual) which is the one generated

by the greedy procedure mentioned in Section 3.1. Meanwhile, any SSD segmentation can

be mapped into an identical virtual segmentation. We recover from σ̂(x∗
virtual) to obtain all

possible SSD segmentations of x∗. The recovery process is merely the assignment of con-

sumers with a valuation in V \P (x∗). The following two constraints should be guaranteed

in the recovery process.

• Balanced Distribution. Consumers with V \P (x∗) should be distributed in a bal-

anced way such that pricing any valuation in V \P (x∗) in each market cannot exceed

its profit in the virtual segmentation.
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• Regularity. All consumers with V \P (x∗) are assigned to a specific market.

Finally, we use the aggregate market in Example 1 to illustrate our results for better

understanding. First, the optimal price profile can be directly obtained using the greedy

segmentation mentioned in Section 3.1. Thus, all SSD direct segmentations should include

two markets with the price profile P (x∗) = {1, 2} and the revenue profile {2
3
, 2
3
}. To derive

all SSD segmentations, it remains to figure out the distribution of consumers with valuation

V \P (x∗) = {3}. Let a denote the mass of consumers assigned to the market with price

1. Then, 1
3
− a consumers go to the other market by regularity. Furthermore, pricing 3

should be never optimal in these two markets, namely

3a ≤ 2

3
, 3(

1

3
− a) ≤ 2

3
.

Therefore, all SSD segmentations have the structure shown in Table 3, where a ∈ [1
9
, 2
9
].

v1 = 1 v2 = 2 v3 = 3 {v2, v3} ϕmin profit

x1
1
3

1
3
− a a 1

3
1 2

3

x2 0 a 1
3
− a 1

3
2 2

3

x∗ 1
3

1
3

1
3

2
3

2 4
3

Table 3: All SSD segmentations of the market in Example 1

5 Discussions

5.1 Relaxing the Minimum Pricing Rule ϕmin

Now we examine the robustness of our results. In this subsection, we relax the as-

sumption of the minimum optimal pricing rule. The other two implicit assumptions, full

information about the value distribution and full rationality, are discussed in Section 5.4.

To show the robustness of our results, we consider other rational tie-breaking rules

instead of the minimum optimal pricing rule.

Definition 5 (Rational Pricing). A pricing strategy ϕO is ex-post rational if ϕO(x) is

optimal in market x.

As an extreme case, we first consider the maximum optimal pricing strategy ϕmax,

which minimizes consumer surplus for tie-breaking.

25



Lemma 4. If the producer adopts ϕmax, the price of any market in any stable segmentation

σ(x∗) is equal to the maximal optimal uniform monopoly price, ϕmax(x∗).

Proof. The proof is relegated to Appendix A.

The surplus pair (π, u) under stable segmentation must be equal to the surplus of charg-

ing ϕmax(x∗) uniformly. Consumer surplus is denoted by u†, which does not necessarily

equal to u∗ because ϕmax(x∗) may not equal ϕmin(x∗).

Proposition 6. If the producer adopts an ex-post rational pricing rule ϕO, under any

stable segmentation, the producer surplus is π∗, and the consumer surplus u ≥ u†.

Proof. The proof is relegated to Appendix A.

Therefore, we fully recognize that any ex-post rational pricing rule (i) cannot change

producer surplus, and (ii) cannot decrease consumer surplus compared with the (worst)

uniform monopoly outcome. Moreover, allowing price discrimination is Pareto-improving

compared with the (worst) outcome where price discrimination is prohibited.

5.2 Individual Deviation

Our results can be extended to the scenario where consumers behave independently

without grouping. Although the simple continuum model in this paper is standard in the

literature, consumers are finite in reality; thus, every individual consumer has a small but

non-negligible market share. This kind of formalization already exists in the literature.

For example, Cong and He (2019), who study the formalization of decentralized consensus

in a blockchain system, assume that the number of agents is sufficiently large; however,

each agent always has a small but positive share.

Having justified the positive measure of an individual consumer, we can treat each con-

sumer alone as a particular form of group. Therefore, our main results can accommodate

individual deviation, and the concept of weak-stable is reduced to the Nash equilibrium

solution. That is to say, those decentralized consumers are not necessarily to be grouped

to fight against the monopolist. A completely decentralized tag-editing is enough.

The remaining issue is that consumers need to be aware and believe they have positive

market power, and their behavior can indeed change the market outcome. This issue will

be addressed in Section 5.4 later.
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5.3 Policy Implications

According to our analysis, stable market segmentation can achieve social-optimal and

buyer-optimal outcomes, which is desirable for policymakers. However, some countries have

forbidden tag-based price discrimination due to market power regulation and consumer

privacy concerns. Big-data-enabled price discrimination is also in the regulatory crosshairs

in China and remains controversial.31 For example, using biased tags was once prohibited

in the draft but was finally relaxed.

Our analysis suggests an alternative approach to protect consumers: Allowing con-

sumers to strategically select their tags, which aligns with the spirit of the General Data

Protection Regulation. Although consumers are still restricted from freely editing their

tags in reality, our analyses suggest that giving consumers more freedom would improve

overall efficiency. Therefore, we should stick to this direction. For example, merely deleting

accounts on the app, corresponding to the right to be entirely forgotten, falls far short of

protecting consumers. Instead, granting them the right to be partially forgotten is crucial

to effective protection.32

For regulators, permitting tag editing is a Pareto improvement compared to allowing

second-hand transactions, although both tools aim to prevent monopolists from exploiting

consumers. The presence of a costless second-hand market reduces the market equilibrium

to a uniform monopoly circumstance. In contrast, enabling circulation among markets,

which is facilitated by data regulations, can further favor consumers without adversely

affecting the monopolist.

Last but not least, promoting data trust, data brokers, or data mediators could play a

significant role in solving the equilibrium selection problem among stable market segmen-

tations, which can be taken into account by the policymaker. A data broker or mediator,

whether motivated by self-interest or social (ESG) concerns, can help choose a social-

optimal stable market segmentation, which is exactly buyer-optimal.

31The controversy can be reflected by the process of establishing regulations. The State Administration
for Market Regulation in China seeks public comments on the draft rules that fine price discrimination in
July 2021. However, the final version is still veiled. Note that the data regulations in China, which are
already approved, seek public opinion in September 2021.

32If not, the producer can segment the market to implement first-degree price discrimination, where
tags perfectly align with valuations. With all consumers labeled, no one wants to cancel the account
voluntarily, as doing so reveals their willingness-to-pay and results in zero utility. Hence, the undesirable
first-degree price discrimination outcome can still occur under stable segmentation.
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5.4 Implicit Assumptions Revisited

Our analyses are conducted based on two implicit assumptions, full information (on

value distributions but not on true valuations for all consumers) and full rationality, for

both the producer and consumers.33 The first assumption requires the producer to have

accurate knowledge of consumers’ value distribution before setting the price, while the

second assumption assumes that the producer can respond to shifts in market conditions

and adjust prices quickly. Examples such as Big-data-based price discrimination (includ-

ing identity-dependent issuance and distribution of shopping coupons), dynamic pricing,

and probabilistic selling, already ubiquitous in online environments, serve to demonstrate

the seller’s acumen in learning consumers’ distribution and real-time market conditions

and adjusting prices accordingly.34 Meanwhile, growing evidence shows the prevalence of

algorithmic pricing, whose automatic nature resolves our concerns.

For the demand side, we assume that consumers must be able to form rational beliefs

about the actions taken by other consumers. In particular, each consumer can learn each

market’s value distribution and react to changes in the distribution. As a result, one

may argue that stable market segmentation can hardly be implemented by the producer

and consumers themselves due to bounded rationality or limited information. However,

existing literature indicates that it is acceptable to assume that consumers can learn about

prices in different markets. For example, Chen, Choe and Matsushima (2020) assume that

active consumers can effortlessly observe personalized or uniform prices set by a producer

and switch to another market by identity management.

The strong assumptions on the demand side are unavoidable outgrowths of incorpo-

rating a large number of strategic consumers, which moves one step further than previous

analyses with a single consumer (see Roesler and Szentes (2017); Condorelli and Szentes

(2020); Ali, Lewis and Vasserman (2023); Armstrong and Zhou (2022)). The problem be-

comes intractable once incomplete information is introduced to the classical framework.

Therefore, we believe that our formalization, which at least serves as a theoretical bench-

mark for the real-world problem, is acceptable. Furthermore, mandated algorithmic trans-

33We do not need to assume that the seller can extract the true valuation for all consumers. Even if
the seller can always learn the value distributions of consumers, she cannot infer their true valuations.
Suppose a small group of consumers deviate to other markets. When comparing two distributions, the
seller has forgotten consumers’ positions in the previous segmentation. In other words, consumers of the
same type can be rearranged across different markets, and the seller cannot detect it.

34See Airbnb (https://padlifter.com/free-tips-and-resources/pricing/
airbnb-smart-pricing-and-price-tips/) and Delta Airlines (https://business.time.com/2012/
05/21/delta-overcharged-frequent-flyers-for-weeks-was-that-legal/) for examples.
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parency enforced by regulators (e.g., in the UK) is conducive to consumers’ rationality,

which also helps consumers recognize that they have positive market powers.35

While full information and full rationality may be idealized, data-related services can

help address these concerns. Internet platforms that aggregate data from both the pro-

ducer and consumers can facilitate the disclosure of information, making our assumption

of complete information more reasonable. Meanwhile, these platforms typically possess

enormous computing power, which can help ensure rational decision-making. As a result,

the producer and consumers can rely on platform suggestions, which are constrained by

incentive compatibility, to guide their actions. Think over WeChat, which connects sellers

and buyers through mini-programs. WeChat, which operates benevolently to favor both

sellers and customers, can gather information and correctly disseminate it.36 Large PC/-

phone manufacturers (e.g., Apple and Samsung) and giant data brokers (e.g., Acxiom and

Bloomberg) can also play the above role. Furthermore, interactions between the producer

and consumers are likely to occur repeatedly, facilitating learning and converging to the

equilibrium outcome.

6 Concluding Remarks

In this paper, we develop a novel framework that addresses how data regulation affects

price discrimination. Specifically, we explore the impact of allowing consumers to choose

which market to enter before the monopolist sets prices. We fully characterize all possible

welfare consequences: The producer surplus remains fixed at the uniform monopoly level,

and the consumer surplus can take any value between the uniform monopoly and buyer-

optimal levels. More importantly, we find that all possible outcomes are Pareto-improving

compared to a scenario where price discrimination is prohibited. Our analysis generates

useful theoretical and practical implications, showing that decentralized interactions can

achieve the same outcome as centralized manipulation. This suggests that traditional anti-

trust tools may not be necessary for regulating online monopolies, which starkly contrasts

economic theory and conventional wisdom in traditional industries.

We comprehensively investigate the decentralized formation of market segmentation

35See https://www.gov.uk/government/collections/algorithmic-transparency-standard for
regulations on algorithmic transparency in the United Kingdom.

36Tencent, the largest digital enterprise in China and also the largest game company worldwide, derives
the majority of its revenue from the games and entertainment sector. Hence, it is reasonable to believe
that WeChat, the Tencent instant messenger service, is altruistic to benefit both sellers and buyers.
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with up-to-date data protection regulations. However, we formalize the problem in a

canonical way with several simplifications. Thus, the current research is merely the first

step in studying individual-driven market segmentation. Our approach can also be applied

to imperfect circulated markets, where some markets may be unavailable for consumers

due to the prohibition on fake information. Consequently, our framework should further

capture the topology of different markets, which seems daunting to obtain neat results as

in this paper. Another possibility is that only a fraction of consumers can edit their tags,

or consumers may be either naive or sophisticated. The relaxation of full information and

full rationality may also be considered in future studies. Furthermore, the same question

answered in this paper can be duplicated in oligopoly environments. These problems

are important for studying price discrimination in E-commerce and can shed light on

emerging decentralized autonomous organizations. Therefore, the decentralized market

segmentation problem formalized in this paper deserves further exploration.

A Appendix

This Appendix collects the omitted proofs.

Proof of Observation 1. Let π(v|x) denote the revenue of pricing v in market x, namely,

π(v|x) ≜ v
∑

vi≥v xi. Then, π(v|x + εek) = π(v|x) + I(v ≤ vk)εv ≤ π(v|x) + εv, where

I(v ≤ vk) equals one if v ≤ vk and equals zero otherwise.

Case I. If vk < ϕmin(x), then for any v < ϕmin(x),

lim
ε→0+

π(v|x+ εek) ≤ π(v|x) + lim
ε→0+

εv < π(ϕmin(x)|x) ≤ lim
ε→0+

π(ϕmin(x)|x+ εek).

The inequality holds by π(v|x) < π(ϕmin(x)|x). Hence, limε→0+ ϕ
min(x+ εek) = ϕmin(x).

Case II. If vk ≥ ϕmin(x), we assume v̂ to be the greatest optimal price in x that is no

larger than vk. For any price v ∈ (v̂, vk],

lim
ε→0+

π(v|x+ εek) = π(v|x) + lim
ε→0+

εv < π(v̂|x) = lim
ε→0+

π(v̂|x+ εek)

because π(v|x) < π(v̂|x). For any price v > vk, π(v|x + εek) = π(v|x) ≤ π(v̂|x). For any

price v < v̂, π(v|x+εek) = π(v|x)+εv < π(v̂|x)+εv̂. Thus, limε→0+ ϕ
min(x+εek) = v̂.

Proof of Lemma 2. Consider two markets xi and xj in a (weak-)stable segmentation σ(x∗)

with ϕmin(xi) < ϕmin(xj). Apparently, consumers with value ϕmin(xj) exist in xj. Con-

sider a small group of consumers with valuation ϕmin(xj) in xj, if he deviates to market
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xi, limε→0+ ϕ
min(xi + εek) = ϕmin(xj) must hold, where vk = ϕmin(xj). Directly from

Observation 1, ϕ(xj) is optimal in market xi.

Proof of Lemma 3. Without loss of generality, we assume ϕmin(xt) = max
{
ϕmin(xi)

}t

i=1
.

Since ϕmin(xt) is optimal in all markets within segmentation σ(x∗), the producer surplus

is unchanged if charging ϕmin(xt) uniformly to all markets. However, charging a uniform

price cannot reach a surplus larger than π∗. Therefore, π is fixed at π∗ for any stable

segmentation by Lemma 1, and ϕmin(xt) should be an optimal uniform monopoly price.

Since ϕmin(xt) is an optimal uniform monopoly price, ϕmin(xt) ≥ ϕmin(x) = v∗. Mean-

while, v∗ must be optimal in all markets within a stable segmentation. Then, ϕmin(xt) ≤ v∗

because ϕmin(xt) is the minimum optimal price in xt. Therefore, ϕ
min(xt) = v∗.

Proof of Proposition 1. For necessity, suppose σ(x∗) = {x1, · · · ,xt} is a weak-stable seg-

mentation. If ϕmin(xi) < ϕmin(xj) for markets xi and xj, for a small group of consumers in

market xj whose value vk lies in
(
ϕmin(xi), ϕ

min(xj)
]
, his utility is zero. Following the same

logic of proving Lemma 2, it should be not profitable for him to deviate to xi, implying

limε→0+ ϕ
min(xi + εek) = vk. By Observation 1, vk is optimal in xi.

For sufficiency, suppose segmentation σ(x∗) = {x1, · · · ,xt} satisfies the condition. For

any small group of consumers with value vk in market xj, we need to evaluate their devi-

ation to another market xi. Observation 1 implies that the price cannot decrease after an

entry. Hence,

• If vk ≤ ϕmin(xi), the price after the entry, limε→0+ ϕ
min(xi + εek) ≥ ϕmin(xi) ≥ vk.

• If vk > ϕmin(xi) but ϕ
min(xi) ≥ ϕmin(xj), the price after the entry, limε→0+ ϕ

min(xi +

εek) ≥ ϕmin(xi) ≥ ϕmin(xj).

Therefore, we suffice to consider the possibilities of deviating to a market xi satisfying

ϕmin(xi) < ϕmin(xj) and vk > ϕmin(xi).

When vk ≥ ϕmin(xj), since ϕmin(xj) ∈ supp{xj} ∩
(
ϕmin(xi), ϕ

min(xj)
]
, ϕmin(xj) is

optimal in market xi by assumption. Then, the price of xi after the entry is at least

ϕmin(xj), indicating no improvement for this consumer. When vk < ϕmin(xj), similarly, the

price of xi after the entry is at least vk. Therefore, σ(x
∗) is weak-stable.

Proof of Proposition 2. The necessity is valid by definition.

For sufficiency, we realize that any segmentation σ(x∗) = {x1, · · · ,xt} satisfy the no-

inflow condition must be stable. By Lemma 3, the maximum price over markets in σ(x∗)

is v∗, and v∗ must be optimal in all markets within σ(x∗).
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By contradiction, we assume σ(x∗) is not stable and a feasible group deviation
{
xi →

(xi − yi + y′
i)
}t

i=1
exists, where y1 + · · ·+ yt = y′

1 + · · ·+ y′
t ̸= 0. Let yi,k and y′i,k denote

the mass of consumers with vk in yi and y′
i, respectively. Hence, ∆yi,k ≜ y′i,k− yi,k denotes

the change of consumers with value vk in market xi.

Part 1. We first claim that there exists a market xi ∈ σ(x∗) such that

∑
k:vk∈[ϕmin(xi−yi+y′

i),v
∗)

∆yi,k > 0 and
∑

k:vk≥v∗

∆yi,k ≥ 0.

The former condition implies that the mass of consumers with value in [ϕmin(xi−yi+y′
i), v

∗)

strictly increase, where ϕmin(xi − yi + y′
i) denotes the price in xi after the deviation of y;

while consumers with value in [v∗, vK ] weakly increase.

We now prove the above statement. Since
∑t

i=1

(∑
k:vk≥v∗ ∆yi,k

)
= 0, there are two

cases:
∑

k:vk≥v∗ ∆yi,k = 0 for all markets; or
∑

k:vk≥v∗ ∆yi,k > 0 for some market xi.

Case I. Let argminxj :yj ̸=0 ϕ
min(xj) denote the market with the lowest price among mar-

kets with outgoing consumers. Hence, there must exist a market xi that has some incom-

ing consumers from the market whose original price is argminxj :yj ̸=0 ϕ
min(xj), implying

y′
i ̸= 0. Immediately, we must have yi ̸= 0; otherwise, if we view y′

i itself as a devi-

ation group, it is a feasible inflow deviation and consumers in y′
i are strictly better off,

which contradicts to the no-inflow condition. Hence, xi contains outgoing consumers, and

thus minxj :yj ̸=0 ϕ
min(xj) ≤ ϕmin(xi). Since y′

i contains consumers whose original price is

minxj :yj ̸=0 ϕ
min(xj), the price faced by y′

i after the deviation, namely ϕmin(xi − yi + y′
i),

should be strictly lower: ϕmin(xi − yi + y′
i) < minxj :yj ̸=0 ϕ

min(xj) ≤ ϕmin(xi).

Since ϕmin(xi − yi + y′
i) < ϕmin(xi) ≤ v∗ and

∑
vk≥v∗∆yi,k = 0, then

∑
k:vk∈[ϕmin(xi−yi+y′

i),v
∗)

∆yi,k =
∑

k:vk≥ϕmin(xi−yi+y′
i)

∆yi,k

=
ϕmin(xi − yi + y′

i)
∑

k:vk≥ϕmin(xi−yi+y′
i)
(xi,k +∆yi,k)

ϕmin(xi − yi + y′
i)

−
∑

k:vk≥ϕmin(xi−yi+y′
i)

xi,k

≥
v∗

∑
k:vk≥v∗(xi,k +∆yi,k)

ϕmin(xi − yi + y′
i)

−
∑

k:vk≥ϕmin(xi−yi+y′
i)

xi,k

=
v∗

∑
k:vk≥v∗ xi,k − ϕmin(xi − yi + y′

i)
∑

k:vk≥ϕmin(xi−yi+y′
i)
xi,k

ϕmin(xi − yi + y′
i)

The inequality holds because pricing ϕmin(xi−yi+y′
i) in xi−yi+y′

i is no worse than pricing
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v∗. Moreover, v∗ is optimal in xi and hence it is strictly better than ϕmin(xi − yi + y′
i),

ϕmin(xi−yi+y′
i)
∑

vk≥ϕmin(xi−yi+y′
i)
xi,k < v∗

∑
vk≥v∗ xi,k, since ϕ

min(xi−yi+y′
i) < ϕmin(xi).

Therefore, we obtain
∑

k:vk∈[ϕmin(xi−yi+y′
i),v

∗) ∆yi,k > 0.

Case II. Consider a market xi satisfying
∑

k:vk≥v∗ ∆yi,k > 0. Since prices in all markets

before the deviation is at most v∗, ϕmin(xi − yi + y′
i) < v∗ to make those consumers in

y′
i have a strictly higher utility. Since v∗ is optimal in xi and ϕ

min(xi − yi + y′
i) < v∗ is

optimal in xi − yi + y′
i. Thus, we have

∑
k:vk∈[ϕmin(xi−yi+y′

i),v
∗)

∆yi,k =
∑

k:vk≥ϕmin(xi−yi+y′
i)

∆yi,k −
∑

k:vk≥v∗

∆yi,k

=
ϕmin(xi − yi + y′

i)
∑

k:vk≥ϕmin(xi−yi+y′
i)
(xi,k +∆yi,k)

ϕmin(xi − yi + y′
i)

−
∑

k:vk≥v∗

∆yi,k −
∑

k:vk≥ϕmin(xi−yi+y′
i)

xi,k

≥
v∗

∑
k:vk≥v∗(xi,k +∆yi,k)

ϕmin(xi − yi + y′
i)

−
∑

k:vk≥v∗

∆yi,k −
ϕmin(xi − yi + y′

i)
∑

k:vk≥ϕmin(xi−yi+y′
i)
xi,k

ϕmin(xi − yi + y′
i)

≥
v∗

∑
k:vk≥v∗(xi,k +∆yi,k)

ϕmin(xi − yi + y′
i)

−
∑

k:vk≥v∗

∆yi,k −
v∗

∑
k:vk≥v∗ xi,k

ϕmin(xi − yi + y′
i)

=

(
v∗

ϕmin(xi − yi + y′
i)
− 1

) ∑
k:vk≥v∗

∆yi,k > 0

The first inequality holds because pricing ϕmin(xi−yi+y′
i) in xi−yi+y′

i is no worse than

pricing v∗. The second inequality holds because pricing v∗ in xi− yi + y′
i is no worse than

pricing ϕmin(xi − yi + y′
i).

Part 2. We start with the market xi satisfying

∑
m:vm∈[ϕmin(xi−yi+y′

i),v
∗)

∆yi,m > 0 and
∑

m:vm≥v∗

∆yi,m ≥ 0.

We now construct a feasible group deviation that xi only has incoming consumers and

other markets only have outgoing consumers by modifying
{
xi → (xi − yi + y′

i)
}t

i=1
. For

simplicity, let v = ϕmin(xi − yi + y′
i). Our construction has the following three steps and

the deviation group shrinks in every single update process with each step.

Step 1. Consider vk and vl with v ≤ vk ≤ vl < v∗ such that yi,k > 0, y′i,l > 0. Let

a = min{yi,k, y′i,l}. Consider the following update

yi,k ← yi,k − a, and y′i,l ← y′i,l − a, (Update A)
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which retains a consumers with vk from yi and repatriates a consumers with vl from y′
i. The

revenue of pricing p ̸∈ (vk, vl] will remain unchanged and the revenue of pricing p ∈ (vk, vl]

will decrease. Then, v is still the minimum optimal price after the update.

Repeat Step 1. Recursively do Step 1 until there exists no vk and vl with v ≤ vk ≤ vl <

v∗ such that yi,k > 0 and y′i,l > 0.

Step 2. Consider all vk and vl with v ≤ vk ≤ vl < v∗ such that y′i,k > 0, yi,l > 0. Since

the case of vk = vl is already resolved by Repeat Step 1, we need only to consider the

situations where v ≤ vk < vl < v∗ and y′i,k > 0, yi,l > 0. Choose a pair of (vk, vl) such

that l − k is minimized. Then, l − k > 0, and y′i,m = 0 for vm ∈ (vk, v
∗] and yi,m = 0 for

vm ∈ [v, vl).

• By Repeat Step 1, y′i,m = 0 for vm ∈ [vl, v
∗] and yi,m = 0 for vm ∈ [v, vk];

• Since l − k > 0 is minimized, yi,m = 0 and y′i,m = 0 for vm ∈ (vk, vl).

Let b = min{y′i,k, yi,l}. Consider the following update

y′i,k ← y′i,k − b, and yi,l ← yi,l − b, (Update B)

which repatriates b consumers with vk from y′
i and retain b consumers with vl from yi.

We need to show that the minimum optimal price of the updated market is still v. The

revenue of pricing p ̸∈ (vk, vl] will remains unchanged. The revenue of pricing p ∈ (vk, vl]

after the update is

p
∑

m:vm≥p

(xi,m +∆yi,m) + pb = p
∑

m:vm≥p

xi,m + p
∑

m:vm≥v∗

∆yi,m + p

 ∑
m:vm∈[p,v∗)

∆yi,m + b


≤ p

∑
m:vm≥p

xi,m + p
∑

m:vm≥v∗

∆yi,m

≤ v∗
∑

m:vm≥v∗

xi,m + v∗
∑

m:vm≥v∗

∆yi,m

≤ v
∑

m:vm≥v

(xi,m +∆yi,m)

The first inequality holds because

∑
m:vm∈[p,v∗)

∆yi,m + b = −
∑

m:vm∈[p,v∗)

yi,m + b ≤ −yi,l + b ≤ 0.

The second inequality holds because pricing v∗ is optimal in xi and p < v∗. The third

inequality holds because pricing v is optimal in xi − yi + y′
i.
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Repeat Step 2. Recursively do Step 2 until there exists no vk and vl with v ≤ vk ≤ vl <

v∗ such that y′i,k > 0 and yi,l > 0.

Step 3. Note that
∑

m:vm∈[v,v∗) ∆yi,m > 0 holds for the original deviation group, and each

round of update in Step 1 or Step 2 will not change the value of
∑

m:vm∈[v,v∗) ∆yi,m. Hence,

the final market after many rounds of updates will have
∑

m:vm∈[v,v∗) y
′
i,m > 0 and yi,m = 0

for all vm ∈ [v, v∗). Consider another deviation group merely including all consumers

associated with
∑

m:vm∈[v,v∗) y
′
i,m. The unique inflow market is xi in this deviation group,

while all other markets only have outgoing consumers. This deviation group is denoted by

z. We claim that all consumers in z are better off by entering market xi. Equivalently,

since supp{z} ∈ (v, v∗), we need to show that ϕmin(xi + z) ≤ v.37

Since v is optimal in the updated market after Repeat Step 2, we obtain that pricing

v is better than pricing any v′ ∈ (v, v∗] in the ith market after Step 3 for the following

reason. If we compare the updated market after Repeat Step 2 and the market after

Step 3, we will find that

• the revenue of pricing some v′ ∈ (v, v∗] is lower by v′
∑

k:vk≥v∗ ∆yi,k;

• the revenue of pricing v is lower by v
∑

k:vk≥v∗ ∆yi,k.

Meanwhile, pricing v′ > v∗ in xi + zi is no better than v∗ since v∗ is optimal in xi and no

consumer in zi has a value in [v∗, vK ]. Therefore, ϕ
min(xi + z) ≤ v.

Proof of Proposition 3. (2) ⇒ (1) ⇒ (3) holds. To prove (3) ⇒ (2), suppose ϕmin(x1) ≤

· · · ≤ ϕmin(xt). By social optimum, ϕmin(xi) = min supp{xi}. For deviation group y,

let i denote the minimum index of those changed markets, and suppose the change is

xi → xi − yi + y′
i. Following the same logic when proving constructed segmentation to be

stable, yi = 0. Then consider consumers with value min supp{y′
i} in y′

i. Some of them

are originally in market xj where j ≥ i. The price of xi after this deviation must be at

least ϕmin(xj):

• If ϕmin(xj) = ϕmin(xi), since all consumers in y′
i have valuations at least ϕmin(xj) =

ϕmin(xi) by social optimum, the price after the entry is at least ϕmin(xj) = ϕmin(xi).

• If ϕmin(xj) > ϕmin(xi), then ϕ
min(xj) should be optimal in xi by (3). Pricing ϕmin(xj)

is strictly better than ϕmin(xi) in market xi + y′
i.

Therefore, no such group y exists; σ(x∗) is stable.

Proof of Proposition 4. We need to verify that σ′(x∗) meets the indifference condition in

37Note that zi contains part of consumers in y′
i; thus, all consumers in y′

i has a value larger than v.
Hence, supp{z} ∈ [v, v∗) by definition but v /∈ supp{z}.
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Proposition 1. Since ϕmin(xi+xj) = ϕmin(xi) = ϕmin(xj), we need to enumerate all markets

with a different price. Let v̂ = ϕmin(xi+xj) for brevity. Consider such a market xk ∈ σ(x∗)

with a different price, ϕmin(xk) ̸= v̂:

1. ϕmin(xk) > v̂. Consumers in xk have no incentive to enter xi + xj for the following

reason. For all v ∈ supp{ϕmin(xk)} ∩
(
v̂, ϕmin(xk)

]
, v is also optimal in market xi

and xj. Thus, v is also optimal in market xi + xj.

2. ϕmin(xk) < v̂. Consumers in xi + xj has no incentive to enter xk. Since the original

segmentation is stable, (i) ∀v ∈ supp{xi} ∩
(
ϕmin(xk), v̂

]
, v is optimal in market xk;

meanwhile, (ii) ∀v ∈ supp{xj}∩
(
ϕmin(xk), v̂

]
, v is optimal in market xk. Therefore,

for all v ∈ supp{xi + xj} ∩
(
ϕmin(xk), v̂

]
, v is also optimal in market xk.

Proof of Proposition 5. Suppose we have two different direct stable segmentations, σ(x∗)

and σ′(x∗), with different price profiles. Let xi represent a market in σ and x′
i represent a

market in σ′. Without loss of generality, we assume markets are ordered by their prices,

ϕmin(xi) < ϕmin(xi+1) and ϕmin(x′
i) < ϕmin(x′

i+1). Suppose ϕmin(xk+1) > ϕmin(x′
k+1) and

ϕmin(xi) = ϕmin(x′
i) for all i ≤ k. Evidently, k ≥ 1 since ϕmin(x1) = ϕmin(x′

1) = v1.

For brevity, we denote x[a, b) =
∑

m:vm∈[a,b) xm as the mass of consumers in market

x with value in the interval [a, b). Let πi and π′
i denote the revenue of the producer

in market xi and x′
i, respectively. For any market xi, by Proposition 3, we have an

indifference relation because ϕmin(xi+1) should be optimal in xi: ϕ
min(xi)xi[ϕ

min(xi),∞) =

ϕmin(xi+1)xi[ϕ
min(xi+1),∞). Rearranging as xi[ϕ

min(xi+1),∞) = ϕmin(xi)xi[ϕ
min(xi),ϕ

min(xi+1))
ϕmin(xi+1)−ϕmin(xi)

,

we have

πi = ϕmin(xi+1)xi[ϕ
min(xi+1),∞) =

ϕmin(xi)ϕ
min(xi+1)xi[ϕ

min(xi), ϕ
min(xi+1))

ϕmin(xi+1)− ϕmin(xi)
(1)

Step 1. Consider market xk. Notice that xk[ϕ
min(xk+1),∞) = ϕmin(xk)xk[ϕ

min(xk),ϕ
min(xk+1))

ϕmin(xk+1)−ϕmin(xk)
.

Since we assume ϕmin(xk) < ϕmin(x′
k+1) < ϕmin(xk+1), we obtain

xk[ϕ
min(xk+1),∞) =

ϕmin(xk)
(
xk[ϕ

min(xk), ϕ
min(x′

k+1)) + xk[ϕ
min(x′

k+1), ϕ
min(xk+1))

)
ϕmin(xk+1)− ϕmin(xk)

(2)

Meanwhile ϕmin(x′
k+1) cannot realize a higher profit than ϕmin(xk+1) in market xk:

ϕmin(x′
k+1)(xk[ϕ

min(x′
k+1), ϕ

min(xk+1))+xk[ϕ
min(xk+1),∞)) ≤ ϕmin(xk+1)xk[ϕ

min(xk+1),∞),

which can be rearranged as xk[ϕ
min(x′

k+1), ϕ
min(xk+1)) ≤

(ϕmin(xk+1)−ϕmin(x′
k+1))xk[ϕ

min(xk+1),∞)

ϕmin(x′
k+1)

.
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Replacing xk[ϕ
min(xk+1),∞) by Equation 2, we have

xk[ϕ
min(x′

k+1), ϕ
min(xk+1))

xk[ϕmin(xk), ϕmin(x′
k+1))

≤
ϕmin(xk)(ϕ

min(xk+1)− ϕmin(x′
k+1))

ϕmin(xk+1)(ϕmin(x′
k+1)− ϕmin(xk))

(3)

Consider market x′
k. Similarly, pricing x′

k+1 is optimal in x′
k by Proposition 3, we have

the indifference relation: ϕmin(x′
k)x

′
k[ϕ

min(x′
k),∞) = ϕmin(x′

k+1)x
′
k[ϕ

min(x′
k+1),∞), which

can be rearranged as

x′k[ϕ
min(x′

k+1),∞) =
ϕmin(xk)x

′
k[ϕ

min(xk), ϕ
min(x′

k+1))

ϕmin(x′
k+1)− ϕmin(xk)

(4)

since ϕmin(x′
k) = ϕmin(xk). Meanwhile, ϕmin(xk+1) cannot realize a higher profit than

ϕmin(x′
k+1) in market x′

k: ϕ
min(x′

k+1)x
′
k[ϕ

min(x′
k+1),∞) ≥ ϕmin(xk+1)(x

′
k[ϕ

min(x′
k+1),∞) −

x′k[ϕ
min(x′

k+1), ϕ
min(xk+1))). Replacing x

′
k[ϕ

min(x′
k+1),∞) by Equation 4, we obtain

x′k[ϕ
min(x′

k+1), ϕ
min(xk+1))

x′k[ϕ
min(xk), ϕmin(x′

k+1))
≥
ϕmin(xk)(ϕ

min(xk+1)− ϕmin(x′
k+1))

ϕmin(xk+1)(ϕmin(x′
k+1)− ϕmin(xk))

(5)

Equation 3 and Equation 5 are suffice to derive
xk[ϕ

min(x′
k+1),ϕ

min(xk+1))

xk[ϕmin(xk),ϕmin(x′
k+1))

≤ x′
k[ϕ

min(x′
k+1),ϕ

min(xk+1))

x′
k[ϕ

min(xk),ϕmin(x′
k+1))

.

Equivalently,
xk[ϕ

min(xk), ϕ
min(xk+1))

xk[ϕmin(xk), ϕmin(x′
k+1))

≤ x′k[ϕ
min(xk), ϕ

min(xk+1))

x′k[ϕ
min(xk), ϕmin(x′

k+1))
. (6)

Step 2. Let πi and π
′
i denote the revenue of markets xi and x′

i, respectively.

The goal here is to show πi = π′
i for i ≤ k − 1. If k = 1, the statement holds trivially.

Hence, we assume k ≥ 2.

Base Case. By ϕmin(x1) = ϕmin(x′
1), ϕ

min(x2) = ϕmin(x′
2) and Equation 1 we have

π1 = ϕmin(x1)ϕmin(x2)x1[ϕmin(x1),ϕmin(x2))
ϕmin(x2)−ϕmin(x1)

and π′
1 =

ϕmin(x1)ϕmin(x2)x′
1[ϕ

min(x1),ϕmin(x2))

ϕmin(x2)−ϕmin(x1)
. Further-

more, x1[ϕ
min(x1), ϕ

min(x2)) = x∗[ϕmin(x1), ϕ
min(x2)) = x′1[ϕ

min(x1), ϕ
min(x2)) holds be-

cause all consumers whose value in the interval [ϕmin(x1), ϕ
min(x2)) must go to x1 ∈ σ(x∗)

or x′
1 ∈ σ′(x∗) to guarantee social optimum. Therefore, π1 = π′

1.

Induction. Suppose π1 = π′
1, · · · , πi−1 = π′

i−1 and consider πi, π
′
i where i ≤ k − 1. We

only need to show that xi[ϕ
min(xi), ϕ

min(xi+1)) = x′i[ϕ
min(xi), ϕ

min(xi+1)). If so, πi = π′
i

holds because ϕmin(xi) = ϕmin(x′
i), ϕ

min(xi+1) = ϕmin(x′
i+1), Equation 1, and

πi =
ϕmin(xi)ϕ

min(xi+1)xi[ϕ
min(xi), ϕ

min(xi+1))

ϕmin(xi+1)− ϕmin(xi)
, π′

i =
ϕmin(xi)ϕ

min(xi+1)x
′
i[ϕ

min(xi), ϕ
min(xi+1))

ϕmin(xi+1)− ϕmin(xi)
.
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To show xi[ϕ
min(xi), ϕ

min(xi+1)) = x′i[ϕ
min(xi), ϕ

min(xi+1)), we realize that the following

identity must be valid because every consumer whose value in the interval [ϕmin(xi), ϕ
min(xi+1))

must go to one market in each segmentation:

i∑
j=1

xj[ϕ
min(xi), ϕ

min(xi+1))︸ ︷︷ ︸
All consumers with value [ϕmin(xi), ϕ

min(xi+1)) in σ

=
i∑

j=1

x′j[ϕ
min(xi), ϕ

min(xi+1))︸ ︷︷ ︸
All consumers with value [ϕmin(xi), ϕ

min(xi+1)) in σ′

.

Since xj[ϕ
min(xi), ϕ

min(xi+1)) =
πj

ϕmin(xi)
− πj

ϕmin(xi+1)
= x′j[ϕ

min(xi), ϕ
min(xi+1)) for j ≤ i− 1,

xi[ϕ
min(xi), ϕ

min(xi+1)) = x′i[ϕ
min(xi), ϕ

min(xi+1)) holds immediately.

Step 3. The objective here is to show that x′k[ϕ
min(xk), ϕ

min(x′
k+1)) ≥ xk[ϕ

min(xk), ϕ
min(x′

k+1))

and xk[ϕ
min(xk), ϕ

min(xk+1)) ≥ x′k[ϕ
min(xk), ϕ

min(xk+1)). We start with an identity,

k∑
j=1

xj[ϕ
min(xk), ϕ

min(x′
k+1))︸ ︷︷ ︸

All consumers with value [ϕmin(xk), ϕ
min(x′

k+1)) in σ

=
k∑

j=1

x′j[ϕ
min(xk), ϕ

min(x′
k+1))︸ ︷︷ ︸

All consumers with value [ϕmin(xk), ϕ
min(x′

k+1)) in σ′

.

Meanwhile, x′j[ϕ
min(xk), ϕ

min(x′
k+1)) =

πj

ϕmin(xk)
− πj

ϕmin(x′
k+1)

for j ≤ k−1, since both ϕmin(xk)

and ϕmin(x′
k+1) are optimal prices for markets {x′

1, · · · ,x′
k−1}. Although ϕmin(xk) is also

optimal price for markets {x1, · · · ,xk−1}, ϕmin(x′
k+1) may not be optimal any more. Hence,

xj[ϕ
min(xk), ϕ

min(x′
k+1)) ≥

πj

ϕmin(xk)
− πj

ϕmin(x′
k+1)

= x′j[ϕ
min(xk), ϕ

min(x′
k+1)) for j ≤ k − 1,

because
πj

ϕmin(xk)
= xj[ϕ

min(xk),∞) and
πj

ϕmin(x′
k+1)
≥ xj[ϕ

min(x′
k+1),∞). Therefore,

x′k[ϕ
min(xk), ϕ

min(x′
k+1)) ≥ xk[ϕ

min(xk), ϕ
min(x′

k+1)). (7)

Similarly,

k∑
j=1

xj[ϕ
min(xk), ϕ

min(xk+1))︸ ︷︷ ︸
All consumers with value [ϕmin(xk), ϕ

min(xk+1)) in σ

≥
k∑

j=1

x′j[ϕ
min(xk), ϕ

min(xk+1))︸ ︷︷ ︸
Some consumers with value [ϕmin(xk), ϕ

min(xk+1)) in σ′

.

while x′j[ϕ
min(xk), ϕ

min(xk+1)) ≥ πj

ϕmin(xk)
− πj

ϕmin(xk+1)
= xj[ϕ

min(xk), ϕ
min(xk+1)) for j ≤

k − 1. Therefore,

xk[ϕ
min(xk), ϕ

min(xk+1)) ≥ x′k(ϕ
min(xk), ϕ

min(xk+1)). (8)

Step 4. By Equation 6, Equation 7, and Equation 8, we realize that all inequalities
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mentioned above must be equations. In particular,

k∑
j=1

xj[ϕ
min(xk), ϕ

min(xk+1)) = x∗[ϕmin(xk), ϕ
min(xk+1)) =

k∑
j=1

x′j[ϕ
min(xk), ϕ

min(xk+1)),

implying that no consumer with value ϕmin(x′
k+1) exists in market x′

k+1. This fact con-

tradicts the optimum of ϕmin(x′
k+1) in x′

k+1. Therefore, the price profile of any stable,

social-optimal, direct segmentation is the same. The equivalence of revenue profile can be

proven by a similar induction method as Step 2.

Step-by-Step Interpretation of Figure 5 and Figure 6

We will briefly explain why Figure 5 and Figure 6 provide the price profile and revenue

profile for the greedy segmentation introduced in Section 3.1.

Recall that xGreedy
1 is an extremal market with supp{xGreedy

1 } = V . Hence, we need

to explain geometrically which value is run out of at the first iteration. Recall that x∗ =

xGreedy
1 + x(1), where x(1) denotes residual market after generating xGreedy

1 . Some value vk

is exhausted, namely x
(1)
k = 0, if and only if

π̂x∗(vk+1)− π̂xGreedy
1

(vk+1)

vk+1

=
π̂x∗(vk)− π̂xGreedy

1
(vk)

vk
,

because
π̂
x(1)

(vk+1)

vk+1
=

∑K
i=k+1 x

(1)
i =

∑K
i=k x

(1)
i =

π̂
x(1)

(vk)

vk
, where vK+1 = ∞. Hence, in the

first round of iteration, the producer’s profit in xGreedy
1 is determined by

max

{
π :

π̂x∗(vk+1)− π
vk+1

≤ π̂x∗(vk)− π
vk

}
.

Since the extremal market x1 packs as many consumers as possible with all valuations on

V , none of possible valuations are exhausted if π̂x∗ (vk+1)−π

vk+1
< π̂x∗ (vk)−π

vk
for all k. Let π

(1)
k

solves the equation π̂x∗ (vk+1)−π

vk+1
= π̂x∗ (vk)−π

vk
, where vk ∈ supp{x∗}. Hence, the exhausted

value is equivalent to finding the minimum π
(1)
k among k = 1, · · · , K. Since (0, π

(1)
k ),

(vk, π̂x∗(vk)) and (vk+1, π̂x∗(vk+1)) are collinear, π
(1)
k is the vertical intercept of the line

connecting (vk, π̂x∗(vk)) and (vk+1, π̂x∗(vk+1)), where (vK+1, π̂x∗(vK+1)) ≡ (+∞, 0).

Let us see Figure 7 for the first iteration in the greedy procedures on Example 3.

We enumerate all five vertical intercepts: four of them are pinned down by extending

four line segments, where line segments are plotted by thick lines and extended lines
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are plotted by dotted lines; the fifth is determined by drawing horizontal line crossing

(v5, π̂x∗(v5)), which can be regarded as extending line segmentation from (v5, π̂x∗(v5)) to

(+∞, 0). Apparently, the minimum vertical intercept is determined by extending the line

segment between (v1, π̂x∗(v1)) and (v2, π̂x∗(v2)). As a result and marked by blue, v1 is

exhausted in the first iteration, and the producer’s profit in xGreedy
1 equals this intercept,

denoted as πG
1 . Using the setup in Example 3, πG

1 = 0.2. Hence,

xGreedy
1 = πG

1

(
1

v1
− 1

v2
,
1

v2
− 1

v3
,
1

v3
− 1

v4
,
1

v4
− 1

v5
,
1

v5

)
=

(
1

10
,
1

30
,
1

60
,

1

100
,
1

25

)
.

We can verify that pricing v1, v2, v3, v4, v5 is equivalent in xGreedy
1 and v1 is exhausted.

Until now, we have established the correctness of generating an extremal market based

on the revenue function π̂x∗ . Therefore, we can generate the extremal market x(k) based on

the corresponding revenue function π̂x(k−1) in each iteration, where x(0) = x∗. For example,

the second extremal market xGreedy
2 are output based on the revenue function π̂x(1) for the

second iteration.

In particular, the revenue function in the kth round is defined as π̂x(k−1)(vi) = π̂x∗(vi)−∑k−1
i=1 π

G
i for vi ∈ supp{x(k−1)}, where πG

i denotes the producer’s profit on xGreedy
i . Recall

that x∗ =
∑k

i=1 x
Greedy
i + x(k), where x(k) denotes residual market after generating xGreedy

k .

Some value vm is exhausted, namely x
(k)
m = 0, vm ∈ supp{x(k−1)}, if and only if

π̂x∗(vm+)−
∑k−1

i=1 π
G
i − π̂xGreedy

k
(vm+)

vm+

=
π̂x∗(vm)−

∑k−1
i=1 π

G
i − π̂xGreedy

m
(vm)

vm
,

where vm+ ≡ µ(vm, supp{x(k−1)}) denotes the smallest element in supp{x(k−1)} that

higher than vm. Hence, in the kth round, producer’s profit in xGreedy
k is determined by

max

{
π :

π̂x∗(vm+)−
∑k−1

i=1 π
G
i − π

vm+

≤ π̂x∗(vm)−
∑k−1

i=1 π
G
i − π

vm

}
.

Let π
(k)
m solves the equation

π̂x∗ (vm+)−πG
1 −π

vm+
=

π̂x∗ (vm)−πG
1 −π

vm
, where vm ∈ supp{x(k−1)}.

Hence, the exhausted value is equivalent to finding the minimum π
(k)
m . Since (0,

∑k−1
i=1 π

G
i +

π
(k)
m ), (vm, π̂x∗(vm)) and (vm+, π̂x∗(vm+)) are collinear,

∑k−1
i=1 π

G
i + π

(k)
m is the vertical inter-

cept of the line connecting (vm, π̂x∗(vm)) and (vm+, π̂x∗(vm+)).

Let us move to the second iteration of Example 3 summarized in Figure 8. Apparently,

supp{x(1)} = {v2, v3, v4, v5}. We enumerate four vertical intercepts: three of them are
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pinned down by extending three line segments, where line segments are plotted by thick

lines and extended lines are plotted by dotted lines; the fourth is determined by drawing

horizontal line crossing (v5, π̂x∗(v5)). Then, we will find that the consumers with v5 are

fully spent in the second iteration since the vertical intercept determined associated with

v5 is minimum. The revenue by pricing any valuation in xGreedy
2 is the same and denoted

as πG
2 . Using the setup in Example 3, πG

1 + πG
2 = 1 and thus πG

2 = 0.8. Hence, the second

extremal market is

xGreedy
2 = πG

2

(
0,

1

v2
− 1

v3
,
1

v3
− 1

v4
,
1

v4
− 1

v5
,
1

v5

)
=

(
0,

2

15
,
1

15
,
1

25
,
4

25

)
.

Pricing v2, v3, v4, v5 is equivalent in xGreedy
2 and v5 is exhausted. Since consumers with value

v2 remain at the residual market, price in xGreedy
3 is also expected to be v2.

In the third iteration, there are only v2, v3, v4 consumers remaining. Continue to find

the minimum among three vertical intercepts, we can see that v3 is exhausted because the

minimum is attained by extending the line segment between (v3, π̂x∗(v3)) and (v4, π̂x∗(v4))

(see Figure 9). As a result and marked by blue, v3 is exhausted in the third iteration, and

the producer’s profit in xGreedy
3 is denoted as πG

3 . Using the setup in Example 3, πG
3 = 0.2.

Hence, the third extremal market is

xGreedy
3 = πG

3

(
0,

1

v2
− 1

v3
,
1

v3
− 1

v4
,
1

v4
, 0

)
=

(
0,

1

30
,
1

60
,
1

20
, 0

)
.

We can verify that pricing v2, v3, v4 is equivalent in xGreedy
3 and v3 is exhausted. The

fourth and fifth rounds are operated similarly, and the graphical illustrations are shown in

Figure 10 and Figure 11, respectively. Merging markets with the same price to obtain the

price profile and revenue profile shown in Figure 12. Removing all dotted lines to obtain

Figure 6.

Proof of Lemma 4. The prices of all markets must be the same. If not, suppose there exist

two different markets xi,xj ∈ σ(x∗) with different prices, ϕmax(xi) < ϕmax(xj). Consider

the consumers whose valuation is ϕmax(xj) in market xj, which is guaranteed to exist. Since

xi using the maximum optimal pricing, we argue that limε→0+ ϕ
max(x + εek) = ϕmax(x),

which is parallel to Observation 1. Thus, the proof is similar. Then, after the deviation,

the price will not change. Hence, it is not stable.

All markets must have the same price to be stable. It remains to show that this price
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Figure 7: First Iteration: v1 is exhausted
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Figure 8: Second Iteration: v5 is exhausted
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Figure 9: Third Iteration: v3 is exhausted
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Figure 10: Fourth Iteration: v2 is exhausted
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Figure 11: Fifth Iteration: v4 is exhausted
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Figure 12: Direct Segmentation

must be the maximal optimal uniform price. Since ϕmax(x) is the same for every x ∈ σ(x∗),

we conclude that ϕmax(x∗) = ϕmax(
∑

x∈σ(x∗) x) = ϕmax(x).

Proof of Proposition 6. Consider any stable market segmentation σ(x∗) = {x1, · · · ,xt}

under the pricing rule ϕO. Without loss of generality, we assume ϕO(x1) ≤ · · · ≤ ϕO(xt).

The merit of this proof is similar to Lemma 3. First, we show that ϕO(xt) is optimal in all

markets xi ∈ σ(x∗). Second, we show that ϕO(xt) is optimal uniform price.

Step 1. Consider a group of consumers in market xt with valuation ϕO(xt) = vt. This

group must exist since any optimal price is supported. If this group of consumers enters
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xi, the revenue in xi + εet by pricing v > vt will remain the same compared with market

xi, while the revenue by pricing v ≤ vt strictly increases. This indicates that any v > vt

cannot be optimal in xi + εet. Therefore, the price after the entry, ϕO(xi + εet), must be

vt to make the deviation unprofitable. This implies that ϕO(xt) is optimal in xi.

Step 2. Since ϕO(xt) is optimal in each market, the producer surplus must be π∗ by

pricing ϕO(xt). This fact holds since π∗ is the maximum possible surplus by a uniform

price and the minimum possible surplus by a rational pricing rule.

Since ϕO(xt) is at most the maximum optimal uniform monopoly price, the consumer

surplus is at least the surplus under the maximum optimal uniform price.
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