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Abstract

We study the optimal joint intervention of a planner who can influence both the

standalone marginal utilities of agents in a network and the weights of the links con-

necting them. The welfare-maximizing intervention displays two key features. First,

when the planner’s budget is moderate (yielding interior solutions), the optimal change

in link weight between any pair of agents is proportional to the product of their eigen-

centralities. Second, when the budget is sufficiently large, the optimal network con-

verges to a simple structure: a complete network under strategic complements, or a

complete balanced bipartite network under strategic substitutes. We show that welfare

effects are governed by the principal eigenvalue of the network, while distributional out-

comes are driven by the dispersion of the corresponding eigen-centralities. Comparing

joint interventions to single interventions targeting only standalone marginal utilities,

we find that joint interventions consistently generate higher aggregate welfare, but may

also increase inequality, revealing a potential trade-off between efficiency and equity.

Classification JEL: D21, D29, D82.

Keywords: eigen-centrality, joint intervention, inequality

∗We are grateful to the editor Marzena Rostek, an advisory editor, two anonymous referees, Francis
Bloch, Yann Bramoulle, Antonio Cabrales, Vasco M. Carvalho, Sihua Ding, Matt Elliott, Andrea Galeotti,
Sanjeev Goyal, Cheng-Zhong Qin, Evan Sadler, Alireza Tahbaz-Salehi, Guofu Tan, Fernando Vega-Redondo,
Wei Zhao and seminar participants for very helpful comments. The usual disclaimer applies.

†Department of Economics, National University of Singapore. e0004083@u.nus.edu
‡Department of Economics, Yale University. yi.liu.yl2859@yale.edu
§Department of Economics, Monash University. yves.zenou@monash.edu
¶School of Economics and Management, Tsinghua University. zhoujj03001@gmail.com

1



1 Introduction

In many socio-economic settings, individual behaviors are interlinked through networks,

so that one person’s actions directly influence others. This creates two broad intervention

levers for a planner: modifying individual incentives (e.g., through subsidies or taxes that

encourage or discourage effort) and altering the network structure itself (e.g., by adding,

removing, or rewiring connections between agents). In practice, effective policies often

combine both instruments. For example, in criminal networks, law enforcement may target

central “key players,” such as gang leaders—a strategy shown to substantially reduce crime

by disrupting social spillovers (Ballester et al. 2006). Yet dismantling parts of the network is

rarely sufficient if the economic incentives for criminal activity persist; displaced offenders

may re-establish ties or others may fill the leadership vacuum.1 Similarly, by focusing

solely on reducing the incentives to commit crime—such as increasing police presence or

imposing harsher punishments—risk ignoring how the criminal network adapts. Criminals

not incarcerated may form new connections with other offenders, potentially offsetting

or even reversing the intended deterrent effect.2 Accordingly, modern crime reduction

strategies often pair network-based crackdowns with incentive-based policies, such as job

training, education, or rehabilitation programs, to provide lawful alternatives and mitigate

recidivism (Braga et al. 2013; Papachristos and Wildeman 2014; Papachristos et al. 2015).

Similar interactions between incentives and network structure arise in other domains. In

education, for instance, peer effects interact with scholarship programs: targeting influen-

tial students for scholarships may raise overall academic performance as peers adjust their

own efforts (Calvó-Armengol et al. 2009). More generally, these examples illustrate how

combining modifications to both network ties and individual payoffs can yield amplified

aggregate effects through feedback loops in the network.

The theoretical literature has extensively studied these two levers, but often in isolation.

A seminal contribution by Ballester et al. (2006) identifies the optimal individual whose

1Programs like Operation Ceasefire (Boston) and Chicago’s Group Violence Reduction Strategy inter-
vened directly in offender networks by targeting specific criminal groups or individuals known to be highly
central in gang networks. These interventions focused on altering the structure of criminal networks—e.g.,
disrupting group cohesion or removing central nodes—but often did not change the broader economic or
social incentives to engage in crime (e.g., poverty, lack of legal employment). As a result, while violence
sometimes temporarily declined, many offenders simply regrouped or shifted to other illegal activities.
Without addressing underlying incentives, such network-focused interventions often had limited durability
(Weisburd et al. 2008; Papachristos 2009; Braga et al. 2017).

2During the U.S. “War on Drugs” and the broader tough-on-crime era of the 1980s and 1990s, policymak-
ers focused heavily on increasing the cost of crime through longer prison sentences, mandatory minimums,
and intensified policing. While incarceration rates soared, these policies often failed to reduce long-term
crime. One reason is that criminal networks adapted: gang members or drug dealers replaced incarcer-
ated associates by recruiting new individuals, sometimes increasing violence as rival networks competed
for territory. This suggests that focusing only on incentives (e.g., deterrence through punishment) without
disrupting network dynamics can lead to unintended consequences (Levitt 1997; Drago et al. 2009; Raphael
and Stoll 2013).
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removal maximally reduces aggregate activity in network games, thus offering guidance

on optimal network-based interventions. In contrast, Galeotti et al. (2020) analyze how

planners should optimally allocate incentives across individuals in the presence of network

spillovers, showing that when actions exhibit strategic complements, incentive allocations

should be proportional to agents’ network centralities. While both types of interventions

can be highly effective, they operate through distinct channels. Moreover, interventions

along one dimension may affect the effectiveness of interventions along the other. For

example, Ballester et al. (2010) demonstrate that when criminals have alternative lawful

employment options, the identity of the optimal key player to remove depends jointly on

the network structure and outside economic opportunities, emphasizing the interplay be-

tween network position and private incentives. Similarly, recent empirical work (Lindquist

et al. 2024) shows that changes in criminal sanctions not only affect participation but also

modify the intensity and composition of co-offending partnerships, directly influencing the

link weights within the network. These observations motivate the need for a more compre-

hensive analysis of joint interventions, where both network ties and individual incentives

can be shaped simultaneously to achieve welfare-improving outcomes.

This paper studies a model in which a benevolent planner seeks to maximize total welfare

in a weighted network where agents’ actions are shaped by both private returns and peer

effects. We allow the planner to intervene along two costly dimensions: first, by conducting

characteristic interventions on agents’ standalone marginal utilities (e.g., targeted subsidies

or penalties), as in Galeotti et al. (2020); and second, by directly modifying the intensity

of links between agents, which indirectly affects behavior through peer spillovers, as in

Sun et al. (2023). The main objective is to characterize the optimal allocation of a fixed

intervention budget across these two instruments.

While Galeotti et al. (2020) focus on targeted interventions, the possibility of intervening

on link weights arises naturally in several settings. In criminal networks, as noted above,

both law enforcement operations and changes in legal incentives influence the structure

and strength of criminal ties (Lindquist et al. 2024). In transportation networks, link

intensities reflect infrastructure capacity, which can be modified by public investment de-

cisions (Fajgelbaum and Schaal 2020). In such contexts, local actors may have limited

ability to reshape connectivity, placing network design under the control of a central plan-

ner. The planner can choose, for example, road widths or public transit frequency, while

pre-existing infrastructure imposes constraints on feasible adjustments. Characteristic in-

terventions may also take the form of localized amenities that affect the marginal utility

of individuals residing in specific regions. Our model captures the interplay between these

two types of interventions and characterizes optimal design when both channels are jointly

available.

Analogous considerations arise in organizational settings, such as distribution or supply
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networks within firms (Shang et al. 2009). Here, link intensities reflect internal allocations

of supply flows or information, which are centrally managed, while individual outlets lack

authority to alter these flows directly. Management faces costs when reallocating supply

across the network, as well as when adjusting the productivity or incentives of individual

units.

Our model reveals rich interactions between these intervention channels. The marginal

returns to characteristic interventions depend on the strength of peer effects and the con-

nections among agents, while the marginal returns to link interventions depend on agents’

network centralities, shaped by both private incentives and network topology. In Theorem

1 we derive necessary conditions for optimality using variational methods. These conditions

appear simpler in the characteristic dimension after applying the spectral decomposition

method, as described in Galeotti et al. (2020). However, the complexity persists because

the network dimension introduces more variables to solve, which are interwined with the

characteristic dimension.

Specializing to the case where standalone marginal utilities are negligible, Proposition

1 shows that the optimal change in link weights is proportional to the product of the

eigen-centralities of the connected agents. These eigen-centralities correspond to the lead-

ing eigenvector associated with the largest eigenvalue under strategic complements, and

with the smallest eigenvalue under strategic substitutes. Under strategic complements,

eigen-centralities have uniform sign, implying that link intensities increase under optimal

intervention, with the largest increases concentrated on central agents. Under strategic sub-

stitutes, eigen-centralities have mixed signs, naturally partitioning the network into two

groups; optimal intervention strengthens cross-group ties while weakening within-group

ties.

In Proposition 2, we relax the assumption that standalone marginal utilities are negligible

and instead consider the general case. When the budget is sufficiently large, the influ-

ence of standalone marginal utilities becomes negligible, and the results from Proposition

1 serve as accurate approximations. Furthermore, by leveraging the triangle inequality,

Proposition 2 establishes both lower and upper bounds for the equilibrium utility. These

bounds depend on the benchmark case with negligible standalone marginal utilities and

the variation in the available budget. Therefore, the results from Proposition 1 give an ap-

proximate characterization of the optimal joint intervention problems. Proposition 2 also

provides the approximation ratio, which is 1 plus a term of order 1 over the square root

of the budget. In particular, the approximation ratio approaches 1 as the budget becomes

large.

Regardless of the initial structure, Theorem 2 establishes that for sufficiently large budgets,

the complete network and the balanced complete bipartite network are optimal under

strategic complements and strategic substitutes, respectively. This result builds on prior
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observations by Galeotti et al. (2020), showing that the shadow price of the planner’s

budget is increasing in the leading eigenvalue (for complements) and decreasing in the

smallest eigenvalue (for substitutes). Thus, the optimal network design problem reduces

to maximizing (or minimizing) the corresponding eigenvalue, as characterized in Lemma

5. We further analyze the configuration of the bipartite structure and its computational

complexity in Proposition 3, connecting it to the classical maximum cut problem.

We then compare welfare outcomes under joint versus single interventions. Theorem 3

establishes that network design yields substantial welfare gains, which increase with the

strength of spillovers. Theorem 4 shows that, under sufficiently large budgets, joint in-

terventions can eliminate payoff inequality by equalizing eigen-centralities. In contrast,

inequality may persist under single interventions that hold the network structure fixed.

However, with moderate budgets, joint interventions may exacerbate inequality due to

trade-offs between aggregate efficiency and distributional equity, as illustrated in Example

2. Proposition 4 quantifies the welfare cost of imposing equality constraints. Finally, we

consider several extensions in Propositions 5, 6, and 7, showing that while these extensions

affect welfare levels, the optimal network structure remains either complete or complete

bipartite under large budgets, consistent with Theorem 2.

1.1 Related Literature

Fixed networks

Our paper builds on the linear-quadratic framework introduced by Ballester et al. (2006)

and Bramoullé et al. (2014) to analyze players’ activity levels and welfare, contributing to

the growing literature on optimal interventions in networks.

A first strand of this literature studies incentive targeting when the network is fixed. In

network-based discriminatory pricing, for example, players receive personalized prices de-

pending on their centrality, as shown by Candogan et al. (2012) and Bloch and Quérou

(2013). Demange (2017) extends the analysis to more general targeting frameworks and

functional forms, while Bimpikis et al. (2016) examine competitive targeting through adver-

tising and information diffusion, allowing for asymmetric equilibria. Related work includes

applications to industrial policy (Liu 2019) and carbon tax reforms via sectoral targeting

(King et al. 2019).

Redistributive policies have also been studied as forms of targeted interventions. In a

public good game on a fixed network, Allouch (2015) show that the welfare effects of in-

come redistribution depend on agents’ Bonacich centralities. Galeotti et al. (2020) study

optimal targeting of standalone utilities in networks with strategic complements, using prin-

cipal component analysis, and demonstrate the importance of eigen-centralities in guiding

optimal incentives. Our analysis of joint interventions directly builds on these insights,
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extending the framework to allow simultaneous intervention on both individual incentives

and link weights. While standalone interventions on individual incentives may be rela-

tively easy to implement through pricing or advertising (Candogan et al. 2012), modifying

the network structure typically requires costly infrastructure or institutional changes with

long-term effects (O’Connor et al. 2020). In such contexts, network interventions become

central to welfare maximization. While Galeotti et al. (2020) show how principal compo-

nent analysis guides optimal targeting in fixed networks, our model demonstrates that in

the joint intervention setting, eigen-centralities also determine optimal adjustments to link

weights.3

A second strand of literature investigates interventions on the network structure itself.

Since the seminal work of Ballester et al. (2006) on identifying key players and the subse-

quent works of Ballester et al. (2010) and Golub and Lever (2010) on key links, a number

of papers have explored optimal network design. These questions are particularly relevant

in criminal networks, where interventions target the structure of co-offending relationships,

as shown by Mastrobuoni and Patacchini (2012). More generally, Belhaj et al. (2016) char-

acterize optimal unweighted undirected networks as nested split graphs, while Li (2023)

extend these results to weighted and directed networks, identifying generalized nested split

graphs as optimal structures. Sciabolazza et al. (2020) provide empirical evidence support-

ing the welfare relevance of structural interventions in collaborative networks.

Endogenous Networks

A related literature considers models where the network structure is endogenously deter-

mined by players’ decisions. In particular, Cabrales et al. (2011) analyze joint determina-

tion of socialization and activity levels, leading to multiple equilibria, while König et al.

(2014) and Sadler and Golub (2024) study endogenous networks with nested split graphs

as equilibrium outcomes. Rogers and Ye (2021) compare decentralized equilibrium net-

works to socially efficient networks, showing conditions under which private and social

incentives coincide. Baumann (2021) obtain similar results for reciprocal equilibria where

link investments are symmetric. Bloch and Dutta (2009) characterize stars as efficient

and stable networks under weighted link formation, while Kinateder and Merlino (2022)

identify complete core-periphery networks as equilibrium outcomes in public good games.

Ding (2022) develop a general framework with link substitutability that generates a variety

of equilibrium topologies, and Carlson (2021) studies optimal bipartite network design in

two-sided platform settings.

3Our analysis, which highlights the role of eigen-centralities in shaping payoff inequality under optimal
interventions, is related to recent work by Elliot and Golub (2019), who shows that Pareto efficiency in
public goods networks is linked to the principal eigenvalue of the network, Ollár and Penta (2023), who
study implementation problems where robust design depends on the spectral radius of payoff externality
networks, and Bochet et al. (2024) who provide further microfoundations for eigen-centralities in network
models of perceived competition.
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While previous work by Sun et al. (2023) has studied equivalences between characteris-

tic and structural interventions, our contribution lies in analyzing how these two types of

interventions interact under a binding budget constraint. In this respect, our model re-

veals richer interactions than earlier equivalence results. Relatedly, Hendricks et al. (1995)

analyze joint design of airline networks and pricing, attributing hub-and-spoke structures

to traffic economies. While their planner’s objective differs, our model similarly combines

network design and incentive decisions, but in a broader strategic environment allowing

both complements and substitutes. As a result, our optimal networks depart from the

hub-and-spoke structure identified in Hendricks et al. (1995).

Taken together, these literatures underscore the importance of both individual incentives

and network structure in shaping welfare outcomes. Our contribution lies in unifying

these two intervention levers within a common framework, and characterizing the optimal

allocation of resources between them.

The remainder of the paper is as follows. Section 2 introduces the model and the definitions

and notations used throughout. Section 3 provides a characterization of the optimal inter-

vention. Section 4 analyzes the resulting welfare and distributional effects and provides a

comparison with the literature without structural interventions. Section 5 discusses some

generalizations while Section 6 concludes the paper. Finally, Appendix A contains proofs

that are omitted in the main text.

2 Model

2.1 Setup

Consider a game on a weighted network g over a set of players N = {1, · · · , n}. Each

player i ∈ N chooses an action xi ∈ R and receives payoff

πi(xi;x−i) = aixi −
1

2
x2i + ϕ

n∑
j=1

gijxixj , (1)

where ai represents player i’s standalone marginal utility, gij denotes the weight of the

link between i and j, and ϕ captures the strategic interactions between players.4 The

network and the standalone marginal utilities ai are exogenous to the players. The case

ϕ > 0 corresponds to strategic complements, while the case ϕ < 0 corresponds to strategic

substitutes. We use the adjacency matrix g = (gij)1≤i,j≤n to summarize the network

structure. We suppose that g is symmetric, has no self-loops, and that there exists an

exogenous cap w̄ > 0 such that gij ∈ [0, w̄] for all i, j. That is, g lies in the space

Gn = {g ∈ Rn×n : gij = gji ∈ [0, w̄] for all i, j, and gkk = 0 for all k.}.
4See, for instance, Ballester et al. (2006); Bramoullé et al. (2014); Galeotti et al. (2020).
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Let

x =


x1
...

xn

 , a =


a1
...

an

 , g =


g11 · · · g1n
...

. . .
...

gn1 · · · gnn

 . (2)

In this game, Ballester et al. (2006) showed that the players’ equilibrium choices of x∗

satisfy

x∗(a,g) = (x∗1(a,g), · · · , x∗n(a,g))T = [I− ϕg]−1a, (3)

subject to the regularity condition whereby the largest eigenvalue of ϕg is less than 1.5

We will later show in Remark 1 that this regularity condition is satisfied for any g ∈ Gn if

and only if the following holds:

Assumption 1.

w̄ <


1

ϕ(n−1) , when ϕ > 0;

− 2
ϕn , when ϕ < 0 and n is even;

− 2
ϕ
√
n2−1

, when ϕ < 0 and n is odd.

From (1), each player’s equilibrium payoff, as a function of a and g, is given by

πi(x
∗(a,g)) = (1/2)(x∗i (a,g))

2, i ∈ N, (4)

so (twice of) the total payoff is

V (a,g) := 2
n∑

i=1

πi(x
∗(a,g)) =

n∑
i=1

(x∗i (a,g))
2 = aT [I− ϕg]−2a, (5)

where we use (4) in the second equality and (3) in the last equality.

Suppose that the original standalone marginal utilities and network link weights are given

by â and ĝ. The planner is able to intervene on â and ĝ, and selects post-intervention

utilities and network so that a and g maximize the players’ total payoff (5). Furthermore,

we assume that this intervention comes at a quadratic cost to the planner, so the planner

solves the system:

max
a∈Rn, g∈Gn

V (a,g; ĝ, â, C) = aT [I− ϕg]−2a,

s.t. κ∥g − ĝ∥2 + ∥a− â∥2 ≤ C. (6)

Note that we allow âi and ai to be negative; in this case, we can interpret ai as the price

or marginal cost of consuming the activity. C > 0 is the total budget and κ ∈ (0,+∞]

5This regularity condition guarantees the existence and uniqueness of an equilibrium; see Ballester et al.
(2006).
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is a parameter that measures the relative cost of intervening in g compared to a. The

quadratic form of the intervention cost greatly simplifies computation, although we expect

that qualitatively similar results hold with alternative convex costs. See Section 5.2 for

details of results under alternative specifications of cost functions and objective functions.6

In the special case for which κ = +∞, we recover the setting of Galeotti et al. (2020) where

the planner cannot intervene in the network design; thus g = ĝ. Formally, the planner

solves the problem

max
a∈Rn

V (a,g; ĝ, â, C) = aT [I− ϕg]−2a

s.t. ∥a− â∥2 ≤ C, and g = ĝ. (7)

For any finite κ, we will refer to the intervention with exogenous g in (7) as the sin-

gle intervention and the intervention with endogenous g in (6) as the joint intervention.

Consequently, we write the solution to (7) as V ∗
single(ĝ, â, C) and the solution to (6) as

V ∗
joint(ĝ, â, C).7 While problem (6) tends to problem (7) in the limit as κ → +∞, their

solutions differ in general when κ is finite. In addition, we emphasize that the dimension of

the joint intervention problem is n2, which is quadratic in the size of the network, whereas

in the single intervention problem (Galeotti et al. 2020), the number of variables is n, which

grows linearly with the size of the network.

2.2 Notations

In this paper, for any p, q ∈ Z+, we write 1p as the length p vector of ones, Ip as the p× p

identity matrix, Jpq as the p × q matrix of ones, and 0p as the p × p matrix of zeros. If

subscripts are omitted, we assume the matrices to be of size n× n. We denote Kp as the

complete graph represented by the adjacency matrix Jpp − Ip, and Kp,q as the complete

bipartite graph represented by the adjacency matrix

(
0p Jpq

Jqp 0q

)
.

Finally, for any p × p symmetric matrix m, denote λ1(m) and λp(m) as the largest and

smallest eigenvalues of m, respectively. Denote further u1(m) and up(m) as the represen-

tative unit eigenvectors corresponding to λ1(m) and λp(m), respectively.8

3 Analysis

In this section, we provide two complementary approaches to characterize the planner’s

program (6). The first approach uses standard variational analysis to pin down the nec-

essary optimality conditions for any candidate solution. In the second approach, we re-

6See Galeotti et al. (2020) for a related discussion.
7In Section 5.1 we discuss another special case in which â is fixed and the planner can design g optimally.
8Pick the eigenvector arbitrarily if λ1(m) or λp(m) occur with multiplicity larger than 1.
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formulate program (6) as a two-stage program, in which, in the first stage, the planner

implements a post-intervention network g, and, then, in the second stage, selects the opti-

mal post-intervention standalone marginal utilities a subject to the adjusted budget (after

subtracting the intervening cost of implementing g). Exploiting several key results in Gale-

otti et al. (2020) in the second stage regarding the optimal a∗ with an exogenous network g

and the shadow price of the budget,9 we are able to gain insights into the optimal network

endogenously selected by the planner in the first stage.

3.1 A variational approach

To obtain the optimal intervention, we first want to determine the marginal increase in the

players’ total payoff from interventions in both the standalone marginal utilities and the

network. Define

θ ≜
∂V

∂a
and ξ ≜

∂V

∂g

as the marginal benefits of intervening in a and g respectively. Further define the matrix

M = [I− ϕg]−1 as in Ballester et al. (2006).

Lemma 1. The marginal benefits θ and ξ are given by the following equations:

θ = 2M2a, (8)

ξ = ϕMaaTM2 + ϕM2aaTM. (9)

Both expressions are obtained by differentiating V = aTM2a with respect to a and g,

respectively. Observe that (8) can be rewritten using the equilibrium condition (3) as

θ = Mx. Therefore, for any i, the marginal benefit of increasing player i’s utility is

θi =
n∑

k=1

mkixk =
n∑

k=1

mkibk(g,a),

where bk(g,a) represents the Katz-Bonacich centrality of player k in network g with weights

a. The marginal benefits can thus be seen as a weighted sum of the Katz-Bonacich cen-

tralities across the network.

To simplify the analysis, we follow the methods proposed in Galeotti et al. (2020), which

decomposes the intervention a into orthogonal principal components of g that are de-

termined by the network and are ordered according to their associated eigenvalues. Let

λ1 > · · · > λn be the eigenvalues of g,10 and let {u1, · · · ,un} be an orthonormal basis of

Rn such that each uk is an eigenvector of g with corresponding eigenvalue λk. Then there

9When g is given, the problem in the second step is precisely the optimal targeting intervention problem
as in Galeotti et al. (2020).

10We make the generic assumption that the eigenvalues of g are distinct.
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exists unique scalars ρ1, · · · , ρn such that

a =

n∑
k=1

ρkuk.

Alternatively, let ρk ≜ aTuk. Using this decomposition, equation (8) becomes

θ = 2M2
n∑

k=1

ρkuk = 2

n∑
k=1

ρk
(1− ϕλk)2

uk.

Similarly, equation (9) can be written as

ξ = 2ϕ

n∑
k,l=1

ρk
1− ϕλk

ρl
(1− ϕλl)2

uku
T
l .

Finally, the optimal intervention can be determined by equating these marginal benefits

with the respective marginal costs of the intervention. Letting µ represent the shadow

price of the budget, that is, µ = ∂V ∗

∂C , we can compute the marginal cost of intervention at

a to be 2µ(a− â), while the corresponding marginal cost of intervention at g is 2µκ(g− ĝ).

However, we have the constraint that g does not have self-loops, so our first order constraint

only holds for the off-diagonal entries of g.

By summarizing the principal component analysis above, we can write the original stan-

dalone marginal utilities as â =
∑n

k=1 ρ̂kuk. Note that µ appears as the marginal costs

to capture the trade-off in allocating the budget between intervening in a and g. The

conditions for optimality are thus summarized as follows:

Theorem 1. The solution to the system (6) must satisfy

ρk
(1− ϕλk)2

uk = µ(ρk − ρ̂k)uk, for all k, (A1)

n∑
k,l=1

ρk
1− ϕλk

ρl
(1− ϕλl)2

ϕ(uku
T
l )ij


= µκ(g∗ − ĝ)ij , g∗ij ∈ (0, w̄);

≤ µκ(g∗ − ĝ)ij , g∗ij = 0;

≥ µκ(g∗ − ĝ)ij , g∗ij = w̄,

for all i ̸= j, (A2)

n∑
k=1

(ρk − ρ̂k)
2 + κ∥g∗ − ĝ∥2 = C, (A3)

where (uk, λk) are the eigenpairs of g∗, in decreasing order of eigenvalues, while ρk, ρ̂k are

the magnitudes of the projections of a∗ and â to uk.

The first two equations, (A1) and (A2), are the first-order conditions with respect to a and

g, while the third equation, (A3), is the first-order condition associated with the budget

constraint, which must bind at the optimal intervention. These conditions are stated in
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the eigen-space of g.

More generally, this theorem characterizes the optimal intervention using a variational ap-

proach. The planner must allocate a fixed budget between modifying standalone marginal

utilities and altering the network structure. The optimal solution aligns the direction of

intervention with the principal components (eigenvectors) of the network. Intuitively, the

planner allocates resources to the directions in which the network most effectively ampli-

fies individual incentives, depending on whether strategic interactions are complements or

substitutes.

3.2 The optimal intervention

We begin by considering the case where â = 0, or equivalently, ρ̂k = 0 for all k. Equation

(A1) reduces to

ρk

(
1

(1− ϕλk)2
− µ

)
= 0,

for all k. Clearly, this implies that ρk ̸= 0 for at most one value of k. Following Galeotti

et al. (2020), the maximizer occurs when ρ1 ̸= 0 when ϕ > 0, and at ρn ̸= 0 when ρ < 0.

Correspondingly, the shadow price of the budget will be

µ =

 1
(1−ϕλ1)2

, ϕ > 0;

1
(1−ϕλn)2

, ϕ < 0.

Using the above, we can now fix a to be in the direction of u1(ϕg), and maximize the total

payoff over all choices of g. That is, we write the value function as

f(C; ĝ, κ) ≜ V ∗
joint(ĝ, â = 0, C) = sup

g

C − κ∥g − ĝ∥2

(1− λ1(ϕg))2
. (10)

Note that for fixed g, the expression C−κ∥g−ĝ∥2
(1−λ1(ϕg))2

is linear in C. Hence f is the supremum

of a set of linear functions, so f itself is convex in C. Furthermore, the tangent of f at

C is equal to the shadow price of the budget, given by µ∗ = (1 − λ1(ϕg
∗))−2. Here µ∗ is

increasing in λ1(ϕg
∗). Therefore, we also obtain that µ∗ and λ1(ϕg

∗) are increasing in C.

To determine g∗, we now consider the first order condition with respect to g. When ϕ > 0

and g∗ij ∈ (0, w̄),11 we have only ρ1 ̸= 0, so condition (A2) in Theorem 1 reduces to

ϕρ21
(1− ϕλ1)3

(u1u
T
1 )ij = µκ(g∗ − ĝ)ij =

1

(1− ϕλ1)2
κ(g∗ − ĝ)ij .

That is, the optimal intervention on the network structure is proportional to the outer

11The case ϕ < 0 is similar.
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product of the first eigenvector with itself. Consequently, the degree of intervention is

larger for links between nodes of high eigen-centrality. Furthermore, note that ρ21 = ∥a∗∥2 =
C − κ∥g∗ − ĝ∥2 by condition (A3) in Theorem 1. We summarize the above results in the

following theorem:

Proposition 1. Suppose â = 0 and Assumption 1 holds.

(a) a∗ is in the direction of u1(ϕg
∗).

(b) V ∗
joint(ĝ, â, C) is convex in C.

(c) µ∗ and λ1(ϕg
∗) are increasing in C.

Denote u1(ϕg) := (u11, · · · , u1n). If the solution g∗ is interior, then

(d)

g∗ij − ĝij =
ϕ(C − ∥g∗ − ĝ∥2)
κ(1− λ1(ϕg))

u1iu
1
j for all i ̸= j, (11)

and

(e)

κ∥g∗ − ĝ∥2 = ϕ2(C − κ∥g∗ − ĝ∥2)2

κ(1− λ1(ϕg∗))2

(
1−

n∑
i=1

(u1i )
4

)
. (12)

When the standalone marginal utilities are negligible, the planner allocates the entire bud-

get to modifying the network. The first three results, (a), (b), and (c), are important

technical findings. Result (d) is more intuitive and interesting. When all marginal stan-

dalone utilities are zero, and given a fixed intervention budget for a and network structure

g, Galeotti et al. (2020) show that the optimal a∗ aligns with the direction of u1(ϕg).

Therefore, the planner’s problem becomes:

sup
g

C − κ∥g − ĝ∥2

(1− λ1(ϕg))2
.

Thus, the optimal solution must satisfy the first-order condition (FOC), which for any

i ̸= j is given by:

−κ(gij − ĝij)︸ ︷︷ ︸
costs of changing gij

+ (C − κ∥g − ĝ∥2)
ϕu1iu

1
j

κ(1− λ1(ϕg))︸ ︷︷ ︸
benefits from increasing λ1 by changing gij

= 0,

which is exactly what Proposition 1(d) states.

Furthermore, result (d) characterizes the optimal intervention by relating it to the principal

components of the network, showing that the degree of intervention in the strength of the

link between two players is proportional to the product of their eigenvector weights. In
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other words, the higher the eigenvector weights of two agents, the greater the weight

assigned to them by the planner. We clarify this result by considering the following ratio:

g∗ij − ĝij

g∗ik − ĝik
=

u1j
u1k

, (13)

for any g∗ij , g
∗
ik ∈ (0, w̄) such that u1k ̸= 0. Equation (13) shows that the ratio of interventions

depends solely on the relative components of the eigenvector of g∗.

Since the assumption â = 0 in Proposition 1 is somewhat restrictive, we now consider the

case of a general â. When the budget C is sufficiently large, â plays a diminishing role,

and the results in Proposition 1 hold approximately. Moreover, by applying the triangle

inequality, we can bound and approximate V ∗(ĝ, â, C) by analyzing the case where â = 0.

Proposition 2. Fix â, ĝ, and κ. If C ≥ ∥â∥2,

V ∗(ĝ, 0, (
√
C − ∥â∥)2) ≤ V ∗(ĝ, â, C) ≤ V ∗(ĝ, 0, (

√
C + ∥â∥)2). (14)

Moreover, the optimal solution to the problem maxV (a,g; ĝ, â = 0, (
√
C − ∥â∥)2) is a

feasible intervention for the problem maxV (a,g; ĝ, â, C) and

V ∗(ĝ, â, C)

V ∗(ĝ, 0, (
√
C − ∥â∥)2)

≤ 1 +
4
√
C∥â∥

(
√
C − ∥â∥)2 − κ∥g∗ − ĝ∥2

,

where g∗ is the optimal network to the problem maxV (a,g; ĝ, â = 0, (
√
C + ∥â∥)2).

Proposition 2 shows that even when initial standalone utilities are not zero, the general

intervention problem can be well approximated by solving the simplified version with zero

initial utilities and adjusted budget. The approximation error becomes negligible as the

budget increases. The intuition is that, for large budgets, the planner’s optimal action is

dominated by the network’s structural features rather than initial heterogeneities.

Specifically, Proposition 2 provides lower and upper bounds for the equilibrium utility based

on the case â = 0 and a variation in the budget. The intuition behind this result is that, by

the triangle inequality, any feasible intervention to the problem maxV (a,g; ĝ, â = 0, (
√
C−

∥â∥)2) (resp. maxV (a,g; ĝ, â, C)) is also feasible for the problem maxV (a,g; ĝ, â, C) (resp.

maxV (a,g; ĝ, â = 0, (
√
C + ∥â∥)2)). Therefore, the optimal solution to

maxV (a,g; ĝ, â = 0, (
√
C − ∥â∥)2)

serves as a good approximation to the general problem maxV (a,g; ĝ, â, C), and the ap-
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proximation ratio can be bounded by the ratio

f((
√
C + ∥â∥)2; ĝ, κ)

f((
√
C − ∥â∥)2; ĝ, κ)

.

Proposition 2 thus shows that, while deriving a closed-form solution for the general V ∗ is

challenging, it can be bounded by studying the case â = 0, with minimal compromise on

the budget C, as characterized by Proposition 1. Furthermore, since κ∥g∗− ĝ∥ is constant,

Proposition 2 provides a tractable method (with the optimal solution also described in

Proposition 2) to approximate the general joint intervention problem within a factor of

1 +O
(

1√
C

)
.12 This also yields the convergence rate, illustrating how Proposition 1 holds

approximately.

Next, using the approximation results (Proposition 2), we return to the case â = 0 and

provide insights into the network structure when the budget is sufficiently large. Recall

that the eigenvector u1(ϕg
∗) corresponds to the largest eigenvalue λmax(g

∗) under strategic

complementarity (ϕ > 0), and to the smallest eigenvalue λmin(g
∗) under strategic substi-

tution (ϕ < 0). Optimal interventions in the network differ dramatically depending on the

sign of ϕ. We have:

(i) When ϕ > 0, by the Perron-Frobenius theorem, the signs of u1i are identical for all

i, implying that g∗ij > ĝij for all i, j by (11). That is, the planner does not reduce

the weight of any link. Intuitively, this suggests that, as the budget increases, the

optimal graph tends toward the complete graph (we will formalize this observation

later).

(ii) When ϕ < 0, we can partition the players into two subsets13:

S+ = {i : u1i > 0}, S− = {j : u1j < 0}.

The planner increases the weights of links across the two sets while reducing the

weights of links within each set. Specifically, by (11),

g∗ij − ĝij =

> 0 if (i ∈ S+, j ∈ S−) or (i ∈ S−, j ∈ S+),

< 0 if i, j ∈ S+ or i, j ∈ S−.

We illustrate the latter in Figure 1. As the budget grows large, the links across the sets

S+ and S− increase to w̄, while the links within the sets decrease to 0. This reveals a

tendency for the network to take a complete bipartite structure as C increases.

12We write f(x) = O(g(x)) if there exist constants N and c such that for any x > N , f(x) ≤ c g(x).
13We ignore nodes with u1

i = 0, since their weights remain unchanged by Proposition 1.
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S+ S−

gik ↑
gij ↓ gkl ↓

Figure 1: Changes in edge weights

3.3 The case of large budgets

We now formally analyze the case where the planner’s budget is large. In this regime, joint

intervention leads to significant differences. We begin by showing that, in this case, the

optimal network always takes a simple form.

Theorem 2. Suppose w̄ satisfies Assumption 1.

(a) If ϕ > 0, then there exists C such that for all C > C,

g∗(C) = w̄Kn.

(b) If ϕ < 0, then there exists C such that for all C > C,

g∗(C) ∼= w̄K⌊n
2
⌋,⌈n

2
⌉.
14

Theorem 2 identifies the optimal network architecture for large budgets. With strategic

complements (ϕ > 0), the planner benefits from reinforcing mutual connections, leading

to a complete network Kn. With strategic substitutes (ϕ < 0), the planner minimizes

redundant interactions, favoring a complete bipartite network K⌊n
2
⌋,⌈n

2
⌉. These simple

structures are optimal because they maximize or minimize the key spectral value (the

largest or smallest eigenvalue), which drives the equilibrium multiplier. We have:15

V ∗
joint(ĝ, â, C) = max

g∈Gn

V ∗
single(g, â, C − κ∥g − ĝ∥2).

= max
g∈Gn

1

(1− λ1(ϕg))2
(C − κ∥g − ĝ∥2) + o(C).

= max
g∈Gn

1

(1− λ1(ϕg))2
C + o(C). (15)

The first equality follows from reinterpreting program (6) as a sequential maximization

problem, while the last equality holds since the cost of network design, κ∥g − ĝ∥2, is

14Given two graphs H and H ′ on p vertices, we say H is isomorphic to H ′ (H ∼= H ′) if there exists a
permutation σ on {1, · · · , p} such that hij = h′

σ(i)σ(j) for all i, j.
15We write f(x) = o(x) if for any ϵ > 0 there exists x0 such that |f(x)| < ϵx for all x > x0.
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bounded. For sufficiently large C, the dominant term in expression (15) is governed by the

social multiplier 1
(1−λ1(ϕg))2

, which is increasing in λ1(ϕg). That is, if g and g′ are two

networks such that λ1(ϕg
′) > λ1(ϕg), then

V ∗
single(g

′, â, C − κ∥g′ − ĝ∥2) > V ∗
single(g, â, C − κ∥g − ĝ∥2)

whenever C is sufficiently large. Consequently, as the budget tends to infinity, the largest

eigenvalue of the optimal network under joint intervention, λ1(ϕg
∗), must approach the

maximal possible value among all g ∈ Gn.
16

When ϕ > 0, we have λ1(ϕg
∗) = ϕλ1(g

∗), while when ϕ < 0, we have λ1(ϕg
∗) = ϕλn(g

∗).

Hence, depending on the sign of ϕ, we either seek the network maximizing the largest eigen-

value λ1 or minimizing the smallest eigenvalue λn. Lemma 5 in the Appendix characterizes

the eigenvalue-maximizing networks.

The largest eigenvalue of a nonnegative matrix is monotone in its entries (see, for instance,

the Perron–Frobenius theorem). Therefore, the largest λ1(g) is achieved when g corre-

sponds to w̄Kn. The problem of finding the smallest possible λn in the case of unweighted

graphs has been studied by Bramoullé et al. (2014).17 In particular, Bramoullé et al. (2014)

show that for any unweighted graph g on n vertices, λn(g) ≥ λn

(
K⌊n

2
⌋,⌈n

2
⌉

)
. In Lemma

5, we show that a similar argument can be extended to general weighted graphs. As a

by-product, Lemma 5 justifies our choice of bounds in Assumption 1. We have:

Remark 1. λ1(ϕg) < 1 for all g ∈ Gn whenever Assumption 1 holds.

That is, the regularity condition λ1(ϕg) < 1 is satisfied for any choice of intervention by

the planner, ensuring that the players’ equilibrium exists.

To complete our analysis of the optimal joint intervention, we now characterize the optimal

choice of a∗, which is the main focus of Galeotti et al. (2020). Remark 2 follows by

applying equation (A1) to the post-intervention network characterized in Theorem 2, with

corresponding eigenvectors u1(ϕg
∗) given in Fact 1.

Fact 1. (a) The largest eigenvalue of Kn is λ1(Kn) = n−1, with corresponding eigenspace

span{(1, 1, . . . , 1)}.

(b) The smallest eigenvalue of K⌊n
2
⌋,⌈n

2
⌉ is

λn

(
K⌊n

2
⌋,⌈n

2
⌉

)
= −

√
⌊n2 ⌋⌈

n
2 ⌉,

16Furthermore, the above argument can be strengthened to show that the optimal network must coincide
with either the complete or the complete balanced bipartite graph for sufficiently large C, as stated in the
theorem; the technical details are provided in the Appendix.

17See also Constantine (1985).
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with corresponding eigenspace

span{(
√

⌈n2 ⌉, . . . ,
√
⌈n2 ⌉︸ ︷︷ ︸

⌊n
2
⌋ terms

,−
√

⌊n2 ⌋, . . . ,−
√

⌊n2 ⌋︸ ︷︷ ︸
⌈n
2
⌉ terms

)}.

This fact presents spectral properties of the complete and complete bipartite graphs. These

structures attain the extreme eigenvalues (largest or smallest), which makes them optimal

for maximizing the planner’s objective under large budgets. The associated eigenvectors

are also simple: uniform for the complete graph, and two-level for the bipartite case.

Remark 2. Suppose w̄ satisfies Assumption 1.

(a) If ϕ > 0, then there exists ξ ∈ {1,−1} such that

lim
C→∞

a∗(C)− â√
C

=
ξ√
n
1n.

(b) If ϕ < 0, then there exists a sequence (ci) with ci → ∞, and a choice of eigenvector

un

(
K⌊n

2
⌋,⌈n

2
⌉

)
in the eigenspace of λn

(
K⌊n

2
⌋,⌈n

2
⌉

)
= −

√
⌊n2 ⌋⌈

n
2 ⌉, such that

lim
i→∞

a∗(ci)− â
√
ci

= un

(
K⌊n2 ⌋,⌈

n
2 ⌉

)
.

This remark explains how the optimal standalone utilities converge in direction as the

budget grows. For ϕ > 0, all agents are treated symmetrically and receive equal boosts. For

ϕ < 0, the intervention splits the population into two groups with opposite signs, reflecting

the optimal bipartition. This aligns with the dominant eigenvector of the corresponding

optimal network.

Thus far, we have established that when ϕ is negative, g∗(C) converges to the complete

balanced bipartite graph for large C. The remaining issue is to identify the optimal par-

tition into two balanced subsets—that is, subsets of (approximately) equal size. When

the standalone marginal utilities are identical, i.e., âi = âj for all i, j, the optimal parti-

tion minimizes the cost of intervention in the network weights, as all nodes are otherwise

symmetric. However, we show that this problem is computationally difficult even in this

special case.

Proposition 3. When âi = âj for all i, j, the configuration problem of choosing the optimal

partition of g∗ that maximizes total payoffs is NP-hard.

This result underscores the computational complexity of determining the optimal bipartite

partition in the case of strategic substitutes. Even when all agents are initially symmetric,

finding the best division is NP-hard, as it corresponds to a constrained maximum cut
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problem. This highlights a practical limitation for implementing optimal interventions in

large systems.

Specifically, given a sufficiently large budget C, Theorem 2 tells us that g∗ must be iso-

morphic to K⌊n
2
⌋,⌈n

2
⌉, with value function

V ∗
joint(ĝ, â, C) = µ∥a∗∥2 = 1

(1− ϕλn(K⌊n
2
⌋,⌈n

2
⌉))2

(
√
C − κ∥g∗ − ĝ∥2 + ∥â∥)2.

Therefore, V ∗
joint(ĝ, â, C) is maximized when κ∥g∗− ĝ∥2 is minimized. Letting S be a part

of the partition of N induced by g∗ with size
⌊
n
2

⌋
, we see that g∗ minimizes

∥g∗ − ĝ∥2 =
∑
i,j∈S

ĝ2ij +
∑
i,j /∈S

ĝ2ij +
∑
i∈S
j /∈S

(w̄ − ĝij)
2 = ∥ĝ∥2 + 2

⌊n
2

⌋ ⌈n
2

⌉
w̄2 − 2w̄

∑
i∈S,j /∈S

ĝij .

Recall the definition of the weight of a cut S ⊂ N as

Cut(S) =
∑

i∈S,j /∈S

ĝij ,

so that the orientation g∗ of K⌊n
2
⌋,⌈n

2
⌉ is the one that maximizes Cut(S). Aside from

the constraint on the size of S, this is similar to the nonnegative weighted maximum cut

problem (MAX-CUT), which is known to be NP-hard (Karp 1972). In the Appendix, we

complete the proof of NP-hardness of the orientation problem by showing reducibility from

the constrained version. The homogeneous standalone marginal utilities here is a special

case of the general joint intervention problem. Therefore, we also show that the general

problem (6) is at least NP-hard.

3.4 Simulations for intermediate budgets

In this section, we present simulation results to illustrate Theorem 2. The original stan-

dalone marginal utilities and the initial network are given in the following example. We

plot the optimal networks under intermediate budgets for the cases ϕ > 0 (ϕ = 0.05) and

ϕ < 0 (ϕ = −0.05), respectively. All other parameter settings are provided in Example 1.
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Example 1. Let n = 8, κ = 0.25, w̄ = 1, and

â =



1

0.2

0.1667

0.1333

0.1

0.0667

0.0333

0


, ĝ =



0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0


.

First, we present simulation results for the case ϕ = 0.05. Figures 2a to 2f display the

optimal networks under different budget levels C. In these graphs, the width of each

edge reflects its weight, while the color indicates the rate of change relative to the original

network. Gray denotes no change, blue indicates a positive change, and red indicates a

negative change. The darker the color, the larger the magnitude of the change.

When ϕ > 0, as predicted, the optimal network eventually converges to the complete

network w̄Kn. In this case, each gij increases monotonically until it reaches the upper

bound w̄, though at different rates. Figure 3a plots the absolute value of the cosine18 of

the angle between a∗(C) and the eigenvector corresponding to the largest eigenvalue of

[I − ϕg∗(C)]−1. As C increases, a∗ and g∗ approach (a∗, . . . , a∗)T and w̄Kn, respectively.

However, the convergence rate remains ambiguous.

We also plot the evolution of λ1(ϕg
∗) with respect to C in Figure 3b. As shown in Figure

3b, λ1 increases monotonically, and the optimal network reaches w̄Kn when C lies between

35 and 40.

Second, in Figures 4a-4f, we present the simulation results and illustrate the ambiguous

effect of C on the optimal network and equilibrium actions when ϕ = −0.05 < 0, under

intermediate budget levels.

When C is sufficiently large (e.g., Figure 4f), the optimal network is isomorphic to the

bi-partite network w̄K⌊n
2
⌋,⌈n

2
⌉. Moreover, based on the simulation results (Figures 4a and

4b), we observe that the weights of links (1, 5), (1, 4), and (1, 3) at C = 1 are smaller than

their corresponding weights at C = 0 and C = 8. Therefore, g∗15, g
∗
14, g

∗
13 are not monotonic

in C. More interestingly, the optimal network is isomorphic to w̄K1,7 when C = 34 (Figure

4c), to K2,6 when C = 35 (Figure 4d), to w̄K3,5 when C = 43 (Figure 4e), and finally

to w̄K4,4 when C = 59 (Figure 4f). We also observe that the optimal network tends to

approach w̄K2,6 when C is between 35 and 42.

18We use the standard notion of cosine similarity: the similarity between two vectors is given by the
cosine of the angle between them in the plane they jointly define.
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(a) C = 0 (b) C = 1

(c) C = 6 (d) C = 20

(e) C = 30 (f) C ≥ 50

Figure 2: Optimal Networks (ϕ = 0.05)
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(a) The cosine of a∗ and the eigenvector. (b) λ1(ϕg
∗)).(ϕ = 0.05)

Figure 3

Figure 5a plots the absolute value of the cosine of the angle between a∗(C) and the eigen-

vector corresponding to the largest eigenvalue of [I − ϕg∗(C)]−1. Figure 5b depicts the

evolution of λ1(ϕg
∗) as a function of C.

(a) The cosine of a∗ and the eigenvector. (b) λ1(ϕg
∗)).(ϕ = 0.05)

There are two apparent stages when ϕ < 0. When the budget is relatively small, the

optimal network is somewhat irregular and unpredictable. As shown in Figure 5b, in order

to balance the allocation of the budget between a∗ and g∗, λ1(ϕg
∗) may initially decrease,

which facilitates intervention in â. When the budget becomes sufficiently large, the optimal

network takes the form of a bipartite graph, corresponding to a local optimum. To reach

the global optimum, one must compare these local optima; as C becomes large enough,

w̄K4,4, having the steepest slope, eventually becomes the globally optimal network.

There are three discontinuities in Figure 5b: one occurs near C = 30, another near C = 40,

and the third near C = 60. Between C = 43 and C = 60, the remaining budget is entirely

22



(a) C = 1 (b) C = 8

(c) C = 34 (d) C = 35

(e) C = 43 (f) C ≥ 59

Figure 4: Optimal Networks (ϕ = −0.05)
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allocated to a∗ to further reduce the angle between a∗ and the eigenvector of w̄K3,5. We

observe that local optima arise at g = w̄K3,5 and g = w̄K4,4. Since it is less costly

to intervene and adjust ĝ to w̄K3,5, the network w̄K3,5 becomes globally optimal under

moderate budgets. Consequently, the optimal solution exhibits discontinuities as a function

of the budget C. The joint intervention problem is complex due to its non-convex nature,

featuring multiple local optima. Finally, Figures 6a and 6b compare the budget allocated

to network interventions as a function of C for both ϕ > 0 and ϕ < 0.

(a) Budget on the Network. (ϕ > 0) (b) Budget on the Network. (ϕ < 0)

4 Welfare and distributional effects

In this section, we analyze the effects of joint intervention on welfare and inequality. We

compare the outcomes under joint and single interventions, with the single intervention

serving as both a special case and an important benchmark for the analysis.

We first discuss welfare. To compare the optimal welfare under joint and single interven-

tions, we consider the ratio

r∗(ĝ, â, C) =
V ∗
joint(ĝ, â, C)

V ∗
single(ĝ, â, C)

.

When C is sufficiently large, the numerator of r∗ is characterized by Theorem 2, while

the denominator is characterized by Galeotti et al. (2020). This allows us to provide an

asymptotic characterization of r∗ as follows.

Theorem 3. Suppose Assumption 1 holds.

(a) If ϕ > 0, then

lim
C→∞

r∗(ĝ, â, C) =

(
1− λ1(ϕĝ)

1− λ1(ϕw̄Kn)

)2

=

(
1− ϕλ1(ĝ)

1− (n− 1)ϕw̄)

)2

.
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(b) If ϕ < 0, then

lim
C→∞

r∗(ĝ, â, C) =

(
1− λ1(ϕĝ)

1− λ1(ϕw̄K⌊n
2
⌋,⌈n

2
⌉)

)2

=

 1− ϕλn(ĝ)

1 + ϕw̄
√⌊

n
2

⌋ ⌈
n
2

⌉
2

.

By using the results from Theorem 2 and Lemma 5, Theorem 3 quantifies the value of the

additional intervention in network design for large budgets by comparing the social mul-

tipliers under the initial network ĝ and the optimal network g∗. Clearly, r∗(ĝ, â, C) ≥ 1,

since the planner’s feasible set is larger under joint intervention than under single inter-

vention. The expressions derived in Theorem 3 also allow us to analyze how the welfare

ratio is affected by the various model primitives.

Corollary 1. Suppose Assumption 1 holds. Then,

(a) limC→∞ r∗(ĝ, â, C) is decreasing in λ1(ϕĝ).

(b) limC→∞ r∗(ĝ, â, C) is increasing in |ϕ|.

(c) limC→∞ r∗(ĝ, â, C) is independent of κ and â.

This corollary describes how model parameters shape the welfare ratio for a very large bud-

get; it follows directly from differentiating the expressions derived in Theorem 3. Corollary

1(a) is intuitive, since the social multiplier under single intervention depends on the size of

λ1(ϕĝ). Corollary 1(b) implies that joint intervention becomes more valuable as spillovers

become stronger. Intuitively, the intensity of spillovers amplifies the effect of link mod-

ifications on players’ actions and, consequently, on total welfare. In contrast, Corollary

1(c) suggests that the relative cost of link intervention plays a limited role in determining

welfare, a point we further discuss in Section 5.2.

What determines the distributional effects of interventions? Given two vectors v,w ∈ Rn
+

such that 1Tv = 1Tw = 1, we say that v is more equitable than w (denoted v ≻L w)

if w majorizes v.19 Equivalently, interpreting v and w as wealth distributions, v Lorenz-

dominates w, which implies that v exhibits less inequality than w under standard measures

such as the Gini coefficient and the Theil entropy index (Atkinson 1970). Moreover, the

maximal elements under ≻L are the vectors with equal entries, representing the case of

perfect equality.

Finally, we define the payoff distribution D as the normalized vector of payoffs:

D∗
j (ĝ, â, C) =

π∗
j (ĝ, â, C)

1Tπ∗
j (ĝ, â, C)

, j ∈ {single, joint}.

19That is, if we reorder the components such that v(1) ≥ · · · ≥ v(n) and w(1) ≥ · · · ≥ w(n), then∑k
i=1 w(i) ≥

∑k
i=1 v(i) for all k ∈ {1, . . . , n}.
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Since 1TD∗
j (ĝ, â, C) = 1, the relation ≻L defines a partial order over D∗

j (ĝ, â, C), up to

permutations of the indices.

Theorem 4. Suppose Assumption 1 holds.

(a) The welfare-maximizing joint intervention achieves equality of payoffs as the budget

goes to infinity when either ϕ > 0 or ϕ < 0 with n even.20 That is, limC→∞
π∗
i

π∗
j
= 1 for all

i, j.

(b) The welfare-maximizing joint intervention can induce a larger payoff inequality com-

pared with single intervention. That is, there exists a choice of parameters ĝ, â, C such that

D∗
single(ĝ, â, C) ≻L D∗

joint(ĝ, â, C).

Theorem 4 examines the distributional consequences of joint versus single interventions.

Part (a) shows that when the budget is large enough, joint interventions can eliminate

inequality entirely by producing uniform eigen-centralities. Part (b) shows that at moderate

budget levels, network changes may increase inequality due to more unequal centrality

distributions.

We first give an example to illustrate Theorem 4(b).

Example 2. Let κ = 0.5, ϕ = 0.15, w̄ = 1, â = 0, and

ĝ =


0 0.14 0.23 0.63 0.05

0.14 0 0.25 0.14 0.46

0.23 0.25 0 0.09 0.39

0.63 0.14 0.09 0 0.11

0.05 0.46 0.39 0.11 0

 .

We have the following normalized payoff vectors:

D∗
single(ĝ, â, C) = D∗

joint(ĝ, â, 0) = (0.217, 0.196, 0.188, 0.198, 0.2)T for all C.

D∗
joint(ĝ, â, 4) = (0.199, 0.214, 0.201, 0.168, 0.219)T .

D∗
joint(ĝ, â, 8) = (0.2, 0.2, 0.2, 0.2, 0.2)T .

We note that the inequality under single intervention is independent of C, since the condi-

tion â = 0 implies that a∗ is always an eigenvector of g∗. Furthermore, it can be checked

that

D∗
joint(ĝ, â, 4) ≻L D∗

joint(ĝ, â, 0) = D∗
single(ĝ, â, C) ≻L D∗

joint(ĝ, â, 8),

illustrating that inequality increases under joint intervention when the planner’s budget

C = 4, which is where the graph intervention causes a dispersion in the eigen-centralities

20When ϕ < 0 and n is odd, the asymmetry in the optimal network for large budgets g∗ = Kn−1
2

,n+1
2

results in nonzero but low inequality.

26



of the optimal network, but inequality vanishes at the larger budget C = 8.21

To show Theorem 4(a), we make use of an important property of the equilibrium payoffs

given in Lemma 2.

Lemma 2. Suppose the eigenspace corresponding to λ1(ϕg
∗) has dimension 1, and let

u1(ϕg∗) = (u11, · · · , u1n) be a representative unit eigenvector. Then

lim
C→∞

π∗
i

π∗
j

=
(u1i )

2

(u1j )
2
.

Intuitively, since each player’s equilibrium payoff equals half of the square of their equi-

librium effort, the relative payoff of two players is equal to the square of their relative

Katz-Bonacich centralities. When C → ∞, a∗—hence, x∗—is approximately a principal

eigenvector of g∗ by equation (A1). In other words, the relative standalone marginal util-

ities approximately equal the relative equilibrium efforts, which approximately equal the

relative eigen-centralities—i.e.,
x∗
i

x∗
j
≈ a∗i

a∗j
≈ u1

i

u1
j
for all i, j. In combination, we obtain that

lim
C→∞

π∗
i

π∗
j

= lim
C→∞

x∗2i
x∗2j

= lim
C→∞

a∗2i
a∗2j

=
(u1i )

2

(u1j )
2
. (16)

Consequently, the payoff inequality in the limit is solely determined by the inequality of

the squared entries of the principal eigenvector u1(ϕg∗).

Under joint intervention, when C is large, the planner selects either the complete network or

the complete bipartite network, as characterized in Theorem 2. The principal eigenvectors

of these networks are provided in Fact 1. We observe that, by allowing for endogenous

network formation, payoff inequality can be entirely eliminated for large C when either

ϕ > 0 or ϕ < 0 and n is even, since in these cases we have |u1i (ϕg∗)| = 1√
n
for all i.

Remark 3. For large budgets, asymptotically zero inequality is achieved under single in-

tervention if and only if |u1i (ϕĝ)| = 1√
n
for all i. When ϕ > 0, this occurs if and only if ĝ

is regular.

Remark 3 clarifies when the single-intervention planner can also eliminate inequality: only

if the initial network is regular (equal degrees for all agents). Otherwise, even large budgets

cannot achieve equal payoffs without network redesign.

Remark 4. For large budgets, since π∗
i /π

∗
j ≈ a∗2i /a∗2j , joint intervention also results in

21When C = 4, the optimal network is g∗ =


0 0.71 0.80 1 0.62

0.71 0 0.84 0.69 1
0.80 0.84 0 0.64 0.99
1 0.69 0.64 0 0.66

0.62 1 0.99 0.66 0

. When C = 8, the

optimal network is the complete graph g∗ = K5.
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approximately equal intervention levels in the standalone marginal utilities a across agents,

whereas substantial heterogeneity in intervention may arise under single intervention de-

pending on the principal components of ĝ.

This remark links the earlier lemma with intervention design. Equal payoffs imply equal

efforts and hence equal standalone utilities. In contrast, if the network is fixed and irregular,

effort and utility interventions must be unequal, limiting equality.

From Theorems 3 and 4, we conclude that, for large budgets, allowing for joint intervention

improves both total welfare and payoff equality. Therefore, a planner should implement

both targeted interventions and network design in order to simultaneously achieve the dual

social objectives of maximizing welfare and minimizing inequality.

However, for intermediate budgets, network changes may actually increase inequality, gen-

erating a trade-off between welfare and inequality. Focusing on the case ϕ > 0, such an

increase in inequality is particularly pronounced when ĝ is close to being regular but not

vertex-transitive.22 In this case, inequality at ĝ is initially low, but as the budget increases,

there exists a range of C in which the welfare-maximizing network g∗ deviates from reg-

ularity as it progressively approaches the complete graph Kn, as illustrated in Example

2.

4.1 The welfare cost of equality

Previously, we identified the potential adverse effect of joint intervention on payoff inequal-

ity for a welfare-maximizing planner. We now turn to studying the welfare cost of imposing

zero payoff inequality under both single and joint interventions. To analyze this trade-off,

we consider a related problem in which the planner prioritizes minimizing inequality over

maximizing total welfare. Specifically, the planner solves (6) subject to the additional

constraint π∗
i = π∗

j for all i, j.

We show that the welfare loss from this equity constraint is negligible under joint inter-

vention when n is large, but it can be substantial under single intervention. By Theorem

4(a), for large C, if ϕ > 0, or ϕ < 0 and n is even, then
π∗
i

π∗
j
→ 1, implying asymptotically

zero inequality. We analyze the remaining case, where ϕ < 0 and n is odd, in the following

lemma.

Lemma 3. Let n ≥ 5 be odd, and g ∈ Gn such that |uni (g)| = |unj (g)| for all i, j. Then

λn(g) ≥ −w̄

(
n− 1

2

)
,

22A graph g is vertex-transitive if, for any two vertices v and v′, there exists an automorphism Ψ on g
such that Ψ(v) = v′.
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with equality when

gij =


0, i, j ≤ n+1

2 ;

1, i ≤ n+1
2 < j or j ≤ n+1

2 < i;

2
k−3 , i, j > n+1

2 and i ̸= j.

Lemma 3 is analogous to Lemma 5, but restricted to network structures whose smallest

eigenvector has entries of equal magnitude (in absolute value). Such choices of g∗ yield

asymptotically zero inequality for large C, due to the proportionalities established in (16).

From Theorem 2, we know that, when ϕ < 0 and C is large, optimal welfare depends

critically on the lower bound of λn(g). Therefore, comparing the lower bounds for λn(g)

provided in Lemmas 5 and 3 allows us to quantify the welfare cost of imposing equality.

Moreover, we observe that the ratio of these lower bounds satisfies

lim
n→∞

−w̄
(
n−1
2

)
−w̄
√

n2−1
2

= 1,

implying that, as n grows large, the welfare loss from imposing payoff equality becomes

negligible.

By contrast, under single intervention, inequality is closely tied to the structure of the

initial network ĝ. As a result, the planner may incur a much larger welfare loss in order

to achieve equality.

Proposition 4. Suppose Assumption 1 holds, ϕ > 0 and â = 0.23 Then for any choice of

single intervention such that π∗
i = π∗

j for all i, j, the total welfare satisfies

Vsingle,eq(ĝ, â, C) ≤ 1

∥[I− ϕĝ]z∥2
,

where z = 1√
n
1n is the normalized vector of ones.

Proposition 4 quantifies the welfare loss from enforcing equal payoffs under single inter-

vention. It shows that if the network is not regular, enforcing equality forces the planner

to use a suboptimal direction in the space of utility interventions, which reduces efficiency.

This loss persists even with large budgets, unlike in the joint intervention case.

Specifically, if ĝ is not regular, then z is not an eigenvector of ĝ, and thus

Vsingle,eq(ĝ, â, C)/Vsingle(ĝ, â, C)

is strictly less than 1. In other words, under single intervention, an inequality-minimizing

23For general â, similar results hold for C → ∞.
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planner achieves a lower total payoff than a utilitarian planner whenever ĝ is not regular.

Since the optimal joint intervention is identical for both types of planners, the gains in

total payoff for the inequality-minimizing planner are even larger than those obtained by

a utilitarian planner. As a result, our bounds in Theorem 3 continue to apply under this

lexicographic social welfare function.

In summary, we find that allowing for joint intervention not only improves welfare and

reduces inequality, but also weakens the trade-off between inequality and total payoff,

leading to even greater welfare improvements when the planner explicitly accounts for

social inequality.

4.2 Simulations of the welfare and equality for intermediate budgets

Here, we provide simulation results of Example 1. Figure 7a displays the welfare under the

optimal single intervention (red line) and the optimal joint intervention (blue line) while

Figure 7b plots r∗ with respect to the budget C.

(a) Welfare (Example 1) (b) r∗ (Example 1)

Figure 7: Welfare simulations (ϕ < 0)

To evaluate the equality index of the payoffs of n players, we calculate the Gini index of

the payoffs under optimal joint and single intervention. In Figure 8, the red line represents

the Gini index under single intervention and the blue line represents the Gini index under

joint intervention with respect to the budget C.
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Figure 8: Gini Index (ϕ < 0)

Similarly, when ϕ = 0.05 and other settings are the same as example 1, we simulate the

Gini index in Figure 9a and the r∗ in Figure 9b .

(a) Gini Index (b) r∗

Figure 9: Welfare simulations (ϕ > 0)

From the Figures 7 and 9, as predicted, r∗ converges to the ratio of the largest eigenvalues

of (I − ϕĝ)2 and (I − ϕḡ)2, where ḡ = w̄K8 for ϕ > 0 and ḡ = w̄K4,4 for ϕ < 0, as

C becomes large. In addition, the Gini index under joint intervention converges to zero.

However, when C corresponds to an intermediate budget, the effect of C on inequality

becomes ambiguous. For example, as shown in Figure 8, the Gini index is not monotonic.
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5 Extensions

5.1 Pure network design

As a counterpart to the single intervention analyzed in Galeotti et al. (2020), we now

consider the case in which the planner can intervene only in the network structure g, while

the standalone utilities remain fixed at their pre-intervention values a. This corresponds

to the optimization problem:

max
g∈Gn

âT [I− ϕg]−2â. (17)

Following the earlier discussion on general cost functions, and noting that the cost of mod-

ifying the network is bounded, we omit the budget constraint without loss of generality, as

it does not bind in this case. Consequently, the total achievable welfare is also bounded.

As a result, pure network design yields lower welfare gains than characteristic-based (util-

ity) interventions when the planner has access to a sufficiently large budget. Interestingly,

although the optimal network configuration under pure design differs from those obtained

under joint interventions, its structure retains similar features. In particular, the optimal

network generally consists of connected components that are either complete or complete

bipartite graphs.

Proposition 5. Suppose âi ̸= 0 for all i, and Assumption 1 holds. Define the sets A+ =

{i : âi > 0} and A− = {i : âi < 0}. Then the solution to (17) satisfies the following:

(a) If ϕ → 0+, then g∗ consists of two disjoint complete graphs formed by the sets A+ and

A−.

(b) If ϕ → 0−, then g∗ is the complete bipartite graph with the partitions as the sets A+

and A−.

Proposition 5 follows from a Taylor expansion of the objective function:

âT [I− ϕg]−2â = âT â+ 2ϕ
∑
i ̸=j

gij âiâj +O(ϕ2).

Since âT â is exogenous, if |ϕ| is sufficiently small, then maximizing âT [I− ϕg]−2â will be

equivalent to maximizing the linear term 2ϕ
∑

i ̸=j gij âiâj . Since gij ∈ [0, w̄], the maximum

is achieved under the condition that gij = w̄ if ϕâiâj > 0, and gij = 0 otherwise. Therefore,

when ϕ > 0, then links are formed between i and j when âi, âj are of the same sign, while

when ϕ < 0, then links are formed between i and j when âi, âj are of opposite signs. This

gives the characterization in Proposition 5.
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5.2 Alternative objective functions and cost functions

Here, we show that although we made use of quadratic utilities and costs in the previous

sections, our results for large budgets are robust to a variety of functional forms. Consider

the case where the planner has an objective function f(π1, · · · , πn), so the planner solves

max
a∈Rn, g∈Gn

f(π1, · · · , πn)

s.t. κ∥g − ĝ∥2 + ∥a− â∥2 ≤ C. (18)

In (18), f represents the choice of social welfare function implemented by the planner. In

our base model, we have considered the case of a utilitarian planner, with f(π1, · · · , πn) =∑n
i=1 πi. A possible alternative is the Rawlsian utility function f(π1, · · · , πn) = mini πi,

where the planner aims to maximize the lowest utility obtained across all players. Both of

these cases are covered under the following proposition.

Proposition 6. Suppose f is symmetric, increasing, concave, and Assumption 1 holds.

Then as C goes to infinity, the solution to (18) tends to g∗ = w̄Kn if ϕ > 0, and tends to

g∗ = w̄Kn
2
,n
2
if ϕ < 0 and n is even.

To show Proposition 6, we note that when g = w̄Kn or g = w̄Kn
2
,n
2
depending on the

sign of ϕ, the payoffs for each agent are asymptotically equal by Theorem 4. The sum of

payoffs
∑n

i=1 πi is also maximized by Theorem 2. Since f is symmetric and concave, we

have f(π1, · · · , πn) ≤ f(π̄, · · · , π̄) for any π1, · · · , πn, where π̄ = 1
n

∑n
i=1 πi. Furthermore,

f(π̄, · · · , π̄) is increasing in π̄. Thus the optimal payoff is attained when g = w̄Kn or

g = w̄Kn
2
,n
2
.

We next allow for more general cost functions instead, and solve the optimization problem

max
a∈Rn, g∈Gn

aT [I− ϕg]−2a

s.t. h(g; ĝ) + ∥a− â∥2 ≤ C. (19)

Here, the function h represents the cost of intervention in the network structure.24 In our

base model, we have assumed that h is given by the square of the L2-norm, h(g; ĝ) =∑
i ̸=j(gij − ĝij)

2, which helped to simplify the characterization in Proposition 1. However,

many other cost functions are possible, such as the L1-norm, h(g−ĝ) =
∑

i ̸=j |gij−ĝij |. The
appropriate choice of cost function will depend on the policies and technologies available to

the planner, but we show in the following proposition that the optimal network structure

is independent of the cost function for large budgets.

24The problem of general cost functions for intervention on the a component is studied in Galeotti et al.
(2020).
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Proposition 7. Suppose h is continuous, and Assumption 1 holds. As C goes to infinity,

the solution to (19) tends to g∗ = w̄Kn if ϕ > 0, and tends to g∗ = w̄Kn
2
,n
2
if ϕ < 0 and n

is even.

To show Proposition 7, first observe that since Gn is compact, then the expenditure on

network design h is bounded. By an argument analogous to (15), we find that as C grows,

the cost on network design becomes irrelevant and the dominant term for the total welfare

is will still be the social multiplier 1
(1−λ1(ϕg))2

, so the graphs that maximize λ1(ϕg) (see

Lemma 5) will be optimal for large C.

6 Concluding remarks

In many economic and social environments, a planner can influence both individuals’ in-

centives and the network through which their actions interact. Such joint interventions,

where the planner simultaneously modifies individuals’ private returns to investment and

the structure of the network, are increasingly relevant in applications ranging from ed-

ucation and health to industrial organization and climate policy. Despite their growing

importance, most of the existing literature has focused on targeted interventions along a

single margin, either by modifying individual incentives or by altering the network struc-

ture. This paper develops a general framework to analyze the design of optimal joint

interventions and highlights their implications for welfare and inequality.

We provide a tractable characterization of the optimal intervention problem under quadratic

costs and strategic interactions, showing how the planner simultaneously allocates the bud-

get across private returns and network weights. Our theoretical results establish that the

optimal network adopts simple structures in large budgets: either a complete network

under strategic complements, or a complete balanced bipartite network under strategic

substitutes. These results allow us to quantify both the welfare gains and the inequality

implications of joint interventions relative to single interventions.

While joint interventions always yield higher welfare by expanding the planner’s feasible

set, we show that they are particularly effective in simultaneously improving welfare and

reducing payoff inequality, especially for large budgets. However, we also document that

for intermediate budgets, network adjustments may introduce nontrivial trade-offs between

welfare and inequality, depending on the initial network structure. Our results highlight

that incorporating network design into intervention policies can substantially reduce these

trade-offs and enhance policy effectiveness.

Overall, our analysis demonstrates that jointly targeting individuals’ incentives and the

network structure can lead to significant improvements in both efficiency and equity, pro-

viding novel insights for the design of optimal interventions in networked environments.
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One interesting direction for research is when the network forms endogenously through

the choices of individual players, rather than being directly designed by the planner. In

such models (e.g. the framework studied by Sadler and Golub (2024)), each player decides

which links to form, and the network structure arises as an equilibrium outcome of their

collective decisions. A social planner in this context cannot choose the network outright

but can intervene indirectly by influencing the incentives for link formation. For example,

the planner might subsidize the creation of certain beneficial links or impose taxes/fees on

forming certain links to discourage them. Analyzing the optimal subsidy or tax scheme for

link formation in an endogenous network game is a promising avenue for future work, as

it would offer a new perspective on targeted interventions that align individual incentives

with social welfare objectives.

Additionally, when interactions are strategic substitutes (ϕ < 0), there is a computational

challenge in implementing the optimal network design. Choosing the best way to partition

the players into two groups (to form the optimal balanced bipartite network) is an NP-hard

problem (Proposition 3). This means that there is no known efficient algorithm to find the

optimal bipartition for large networks, making exhaustive search infeasible as the network

size grows. Further work is thus needed to develop approximation algorithms or heuristic

methods that can guide the planner’s decisions in this scenario. Designing such algorithms

would reduce the computational difficulty and enable near-optimal network interventions

even when the exact optimum is too complex to compute.
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Appendix

A Proofs

Proof of Theorem 1. We begin by showing that the budge constraint must be bind-

ing under the optimal solution. If the budget constraint is not binding for the solution

(a∗,g∗), then there must be a parameter λ > 1 such that (λa∗,g∗) satisfies the budget

constraint. Since λ2V (a∗,g∗; ĝ, â, C) = V (λa∗,g∗; ĝ, â, C), (a∗,g∗) cannot be optimal.

(V (a∗,g∗; ĝ, â, C) > 0 since (I− ϕg∗)−2 must be positive definite.)

Suppose (a∗,g∗) is optimal. Let L(a∗,g∗) be the Lagrangian of the Problem 6. Therefore,

L(a∗,g∗) = a∗T [I− ϕg∗]−2a∗ + µ(C − κ∥g∗ − ĝ∥2 − ∥a∗ − â∥2) where µ = ∂V ∗

∂C .

(A1) is just the FOC of L with respect to a∗ (recall that g∗ is symmetric):

2[I− ϕg∗]−2a∗ = 2µ(a∗ − â). (20)

Rewriting (20) with respect to the basis {u1, · · · ,un} gives (A1).

For (A2), we first observe that L(a∗,g∗) ≥ L(a∗, (1 − t)g∗ + tg′) for any t ∈ [0, 1] and

g′ ∈ Gn. Thus the directional directive of L(a∗, ·), in the direction of g′ − g∗ must be

nonpositive. We evaluate them in the following Lemma:

Lemma 4. (Some matrix calculus results) Define

H = {h ∈ Rn×n|hij = hji and hii = 0 for all i, j.}.

(a) As a function of the network g, the directional derivative of aT [I − ϕg]−2a in the

direction of h ∈ H equals

lim
ϵ→0

aT [I− ϕ(g + ϵh)]−2a− aT [I− ϕg]−2a

ϵ
= 2Tr(ϕ[I− ϕg]−1aaT [I− ϕg]−2h). (21)

(b) As a function of the network g, the directional derivative of ∥g − ĝ∥2 in the direction

of h ∈ H equals

lim
ϵ→0

∥g + ϵh− ĝ∥2 − ∥g − ĝ∥2

ϵ
= 2Tr((g − ĝ)h). (22)

Proof of Lemma 4. The proof follows from straightforward matrix operations.

(a)

lim
ϵ→0

aT [I− ϕ(g + ϵh)]−2a− aT [I− ϕg]−2a

ϵ
= lim

ϵ→0

∥[I− ϕ(g + ϵh)]−1a∥2 − ∥[I− ϕg]−1a∥2

ϵ
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= lim
ϵ→0

⟨([I− ϕ(g + ϵh)]−1 + [I− ϕg]−1)a, ([I− ϕ(g + ϵh)]−1 − [I− ϕg]−1)a⟩
ϵ

=⟨2[I− ϕg]−1a, lim
ϵ→0

([I− ϕ(g + ϵh)]−1 − [I− ϕg]−1)

ϵ
a⟩

=2⟨[I− ϕg]−1a, [I− ϕg]−1ϕh[I− ϕg]−1a⟩ = 2Tr(ϕ[I− ϕg]−1aaT [I− ϕg]−2h).

(b)

lim
ϵ→0

∥g + ϵh− ĝ∥2 − ∥g − ĝ∥2

ϵ
= lim

ϵ→0

⟨2g + ϵh− 2ĝ, ϵh⟩
ϵ

= ⟨2(g − ĝ),h⟩ = 2Tr((g − ĝ)h).

□

Applying equations (21) and (22) in Lemma 4, we obtain that for any g′ ∈ Gn,

⟨
{
ϕ[I− ϕg∗]−1a∗a∗T [I− ϕg∗]−2 − µ∗κ(g∗ − ĝ)

}
,g′ − g∗⟩ ≤ 0.

Define eij to be a matrix with 1 on the (i, j) and (j, i) entries and 0 elsewhere. Whenever

g∗
ij ∈ (0, w̄), we can choose sufficiently small η > 0 so that g′ = g∗ ± ηeij are in Gn. Since

⟨
{
ϕ[I− ϕg∗]−1a∗a∗T [I− ϕg∗]−2 − µ∗κ(g∗ − ĝ)

}
, ηeij⟩

= −⟨
{
ϕ[I− ϕg∗]−1a∗a∗T [I− ϕg∗]−2 − µ∗κ(g∗ − ĝ)

}
,−ηeij⟩,

we must have

⟨
{
ϕ[I− ϕg∗]−1a∗a∗T [I− ϕg∗]−2 − µ∗κ(g∗ − ĝ)

}
, eij⟩ = 0.

Expanding the inner product gives the first case of (A2) and similar arguments give the

rest.

□

Proof of Proposition 1. Parts (a) to (d) are derived in the main text, while part (e)

is obtained by summing the result in (d) across all gij . □

Proof of Proposition 2. Lower bound: Suppose that a∗,g∗ is an optimal solution to
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the problem maxV (a,g; ĝ, â = 0, (
√
C − ∥â∥)2). Then, by the triangle inequality,

∥a∗ − â∥2 ≤ (∥a∗∥+ ∥â∥)2

≤ (

√
(
√
C − ∥â∥)2 − κ∥g∗ − ĝ∥2 + ∥â∥)2

= (
√
C − ∥â|)2 + 2∥â∥

√
(
√
C − ∥â∥)2 − κ∥g∗ − ĝ∥2 + ∥â∥2 − κ∥g∗ − ĝ∥2

≤ (
√
C − ∥â∥)2 + 2∥â∥(

√
C − ∥â∥) + ∥â∥2 − κ∥g∗ − ĝ∥2

= C − κ∥g∗ − ĝ∥2.

so a∗,g∗ is a feasible intervention for the problem maxV (a,g; ĝ, â, C). Hence V ∗(ĝ, â, C) ≥
V ∗(ĝ, 0, (

√
C − ∥â∥)2).

Upper bound: Suppose that a∗∗,g∗∗ is an optimal solution to the problem maxV (a,g; ĝ, â, C).

Then, by the triangle inequality,

∥a∗∗∥ − ∥â∥ ≤ ∥a∗∗ − â∥ ≤
√

C − κ∥g∗ − ĝ∥2.

Therefore,

∥a∗∗∥2 ≤ (
√
C − κ∥g∗∗ − ĝ∥2 + ∥â∥)2

= C + 2∥â∥
√
C − κ∥g∗∗ − ĝ∥2 + ∥â∥2 − κ∥g∗∗ − ĝ∥2

≤ C + 2∥â∥
√
C + ∥â∥2 − κ∥g∗∗ − ĝ∥2

= (
√
C + ∥â∥)2 − κ∥g∗∗ − ĝ∥2.

so a∗∗,g∗∗ is a feasible intervention for the problem maxV (a,g; ĝ, â = 0, (
√
C + ∥â∥)2).

Hence V ∗(ĝ, â, C) ≤ V ∗(ĝ, 0, (
√
C + ∥â∥)2).

Now we prove the second part of this lemma. By the first part of this lemma, for C ≥ ∥â∥2,

V ∗(ĝ, â, C)

V ∗(ĝ, 0, (
√
C − ∥â∥)2)

≤ V ∗(ĝ, 0, (
√
C + ∥â∥)2)

V ∗(ĝ, 0, (
√
C − ∥â∥)2)

=
f((

√
C + ∥â∥)2)

f((
√
C − ∥â∥)2)

. (23)

Also, by Proposition 1, we have that f(x) is convex. Suppose g∗∗∗ is the optimal network

solution to the problem maxV (a,g, ĝ, 0, (C + ∥â∥)2). Thus, by envelop theorem,

f((
√
C − ∥â∥)2) ≥ ((

√
C − ∥â∥)2 − (

√
C + ∥â∥)2)f ′((

√
C + ∥â∥)2) + f((

√
C + ∥â∥)2)

= ((
√
C − ∥â∥)2 − (

√
C + ∥â∥)2) 1

(1− λ1(ϕg∗∗∗))2
+ f((

√
C + ∥â∥)2).

(24)
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Therefore, by (23), (24), and f((
√
C + ∥â∥)2) = (

√
C+∥â∥)2−κ∥g∗∗∗−ĝ∥2

(1−λ1(ϕg∗∗∗))2 ,

V ∗(ĝ, â, C)

V ∗(ĝ, 0, (
√
C − ∥â∥)2)

≤ f((
√
C + ∥â∥)2)

f((
√
C − ∥â∥)2)

≤ f((
√
C + ∥â∥)2)

− 4
√
C∥â∥

(1−λ1(ϕg∗∗∗))2 + f((
√
C + ∥â∥)2)

=
(
√
C + ∥â∥)2 − κ∥g∗∗∗ − ĝ∥2

−4
√
C∥â∥+ (

√
C + ∥â∥)2 − κ∥g∗∗∗ − ĝ∥2

= 1 +
4
√
C∥â∥

(
√
C − ∥â∥)2 − κ∥g∗∗∗ − ĝ∥2

.

□

Lemma 5. Let g ∈ Gn.

(i)

λ1(g) ≤ w̄(n− 1),

with equality if and only if g is the complete graph w̄Kn.

(ii)

λn(g) ≥ −w̄

√⌊n
2

⌋ ⌈n
2

⌉
,

with equality if and only if g is isomorphic to the complete bipartite graph w̄K⌊n
2
⌋,⌈n

2
⌉.

Proof of Lemma 5.

(i) Let g ∈ Gn. Let u = u1(g).
25 Pick any uk = maxi ui > 0. Then

λ1(g)uk = (gu)k =
n∑

i=1

gkiui ≤ w̄(n− 1)uk,

with equality only if gki = w̄ and ui = uk for all i ̸= k. The latter implies that our choice

of k can be replaced by any other j, so we have gji = w̄ for all i ̸= j. Hence g represents

w̄Kn.

(ii) We begin by stating Proposition 7 of Bramoullé et al. (2014):

Proposition (Bramoullé et al. (2014)). Let g be a simple graph. Let u be an eigenvector

for λn(g) and let R = {i : ui ≥ 0}, S = {j : uj < 0}. Construct g′ by removing links

within R and S, and adding links between R and S. Then λn(g
′) ≤ λn(g).

25Since g is nonnegative, such a nonnegative eigenvector exists by the Perron-Frobenius theorem.
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Proof. We have

λn(g) =
∑
i,j∈R

uiujgij +
∑
i,j∈S

uiujgij + 2
∑

i∈R,j∈S
uiujgij

≥
∑
i,j∈R

uiujg
′
ij +

∑
i,j∈S

uiujg
′
ij + 2

∑
i∈R,j∈S

uiujg
′
ij = λn(g

′), (25)

Clearly, the same argument applies even if g is allowed to be a weighted graph, so a

complete bipartite graph is optimal. Furthermore, among the set of complete bipartite

graphs, the smallest eigenvalue occurs when the vertices are partitioned into sets of size

⌊n2 ⌋ and ⌈n2 ⌉. It remains to show that w̄K⌊n
2
⌋,⌈n

2
⌉ is the unique graph (up to isomorphism)

that minimizes λn(g), with

λn(w̄K⌊n
2
⌋,⌈n

2
⌉) = −w̄

√⌊n
2

⌋ ⌈n
2

⌉
.

Let g be a network that is not isomorphic to w̄K⌊n
2
⌋,⌈n

2
⌉. First suppose that ui ̸= 0 for all

i. Then the inequality in (25) holds strictly, so there exists g′ with λn(g
′) < λn(g), thus g

cannot be optimal.

Otherwise, without loss of generality suppose that un = 0. Let gn−1 be the (n − 1)-th

principal minor of g, and u1:n−1 be the first n− 1 components of u. Then

gu = λn(g)u =⇒ gn−1u1:n−1 = λn(g)u1:n−1,

so λn(g) is also an eigenvalue of gn−1. This implies that

λn(g) ≥ λn−1(gn−1) ≥ −w̄

√⌊
n− 1

2

⌋⌈
n− 1

2

⌉
> −w̄

√⌊n
2

⌋ ⌈n
2

⌉
,

so g also cannot be optimal. Hence the only minimizers of λn(g) are isomorphic to

w̄K⌊n
2
⌋,⌈n

2
⌉. □

Proof of Remark 1. From the bounds in Lemma 5,

(a) If ϕ > 0, then λ1(ϕg) ≤ ϕw̄(n− 1) < 1.

(b) If ϕ < 0 and 2 | n, then

λ1(ϕg) = ϕλn(ϕg) ≤ −ϕw̄

√⌊n
2

⌋ ⌈n
2

⌉
= −ϕw̄

n

2
< 1.
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(c) If ϕ < 0 and 2 ∤ n, then

λ1(ϕg) = ϕλn(ϕg) ≤ −ϕw̄

√⌊n
2

⌋ ⌈n
2

⌉
= −ϕw̄

√
n2 − 1

4
< 1.

□

Proof of Theorem 2. To prove the existence of a cutoff C̄, we first take limits of (20):

lim
C→∞

2[I− ϕg∗]−2 a∗√
C

= lim
C→∞

2µ
a∗ − â√

C

=⇒ lim
C→∞

[I− ϕg]−2 a∗√
C

= lim
C→∞

µ
a∗√
C
,

so

lim
C→∞

µ =
1

(1− λ)2
.

Similar to Galeotti et al. (2020), a∗
√
C

goes to the corresponding eigenvector u(g). From

(A2), if there exists arbitrary large C such that g∗kl ∈ (0, w̄), we have

0 = lim
C→∞

2κ(g∗ − ĝ)kl
C

= lim
C→∞

1

µC
(ϕ[I− ϕg∗]−1a∗a∗T [I− ϕg∗]−2 + ϕ[I− ϕg∗]−2a∗a∗T [I− ϕg∗]−1)kl

= ϕ(1− λ)2
(
[I− ϕg]−1u(g)u(g)T [I− ϕg]−2 + [I− ϕg]−2u(g)u(g)T [I− ϕg]−1

)
kl

=
2ϕ

1− λ
uk(g)ul(g)

̸= 0,

with the last inequality because uk(g) ̸= 0 for all k. Therefore, there cannot be interior g∗ij
for sufficiently large C, so g∗ must be either complete or complete bipartite from Lemma

5. □

Proof of Fact 1. (a) It is easy to check that (1, 1, · · · , 1) is an eigenvector of Kp. By

the Perron-Frobenius theorem, it must also be a basis of the eigenspace of λ1(Kp).

(b) We note that

Kp,q =

(
0p Jpq

Jqp 0q

)
is of rank two and has zero trace, so it has a unique eigenvector that corresponds to a

negative eigenvalue. We can verify that the given vector is the desired eigenvector of

λp+q(Kp,q). □

Proof of Proposition 3. Call the constrained version of MAX-CUT with |S| = ⌊n2 ⌋ the
balanced maximum cut (BAL-MAX-CUT) problem, and call a partition of N into parts
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of sizes ⌈n2 ⌉ and ⌈n2 ⌉ a balanced cut.

MAX-CUT ≤P BAL-MAX-CUT:26 Given an instance G of MAX-CUT with adjacency ma-

trix mp×p, consider the instance G
′ of BAL-MAX-CUT with adjacency matrix

(
m 0p

0p 0p

)
.

Then every cut of G can be extended to a balanced cut of G′ by a suitable assignment of

the independent vertices, without changing the total cut weight. Similarly, every balanced

cut of G′ can be restricted to a cut of G without changing the cut weight by removing

the additional vertices. Thus the instance G′ of BAL-MAX-CUT solves the MAX-CUT

problem.

BAL-MAX-CUT ≤P MAX-CUT: Given an instance H of BAL-MAX-CUT with adjacency

matrix mp×p, consider an instance H ′ of BAL-MAX-CUT with adjacency matrix m +

α(Jpp − Ip), where α > 1Tpm1p is sufficiently large.

Let k =
⌊p
2

⌋ ⌈p
2

⌉
be the number of edges in a half-cut of H ′. Then the weight of any

balanced cut is at least αk, while any other cut has at most k − 1 edges so has weight at

most α(k − 1) + 1Tpm1p < αk. Therefore, the maximal cut is the maximal balanced cut

and the instance H ′ of MAX-CUT solves the BAL-MAX-CUT problem.

Therefore, BAL-MAX-CUT, and hence the orientation problem, is in the same computa-

tional class as the MAX-CUT problem and is NP-hard (Karp 1972). □

Proof of Theorem 3. We have

lim
C→∞

r∗(ĝ, â, C) = lim
C→∞

max
g∈Gn

V ∗
single(g, â, C)

V ∗
single(ĝ, â, C)

= max
g∈Gn

(
1− λ1(ϕĝ)

1− λ1(ϕg)

)2

,

with maxg∈Gn λ1(ϕg) given by Lemma 5. □

Proof of Theorem 4. Part (b) is shown in Example 2, while part (a) follows directly

from Lemma 2 and discussions in the main text. □

Proof of Proposition 2. The proof largely follows from the main text. It remains to

justify that
x∗i
x∗j

≈ a∗i
a∗j

≈ u1i
u1j

for all i, j

when C is large. By (A1), and possibly multiplying u1(ϕg∗) by −1, we have the relation

lim
C→∞

a∗

∥a∗∥
= lim

C→∞
u1(ϕg∗).

26We write X ≤P Y if problem X is reducible to problem Y in polynomial time.
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Therefore, by (3) and the above,

lim
C→∞

x∗

∥a∗∥
= lim

C→∞

[I− ϕg]−1a∗

∥a∗∥
= lim

C→∞
[I− ϕg]−1u1(ϕg∗) = lim

C→∞

1

1− λ1(ϕg)
u1(ϕg∗).

Consequently, x∗,a∗,u1(ϕg∗) are approximately proportional vectors when C is large and

the desired equation holds. □

Proof of Lemma 3. Since |uni | = |unj | for all i, j, then |uni | = 1√
n

for all i. By a

relabelling of the indices and possibly multiplying by −1, without loss of generality let

uni = 1√
n
if i ∈ {1, · · · , k}, and uni = − 1√

n
otherwise. Also let k > n

2 . By definition,

λn(g)u
n
1 =

n∑
i=1

g1iu
n
i =

k∑
i=1

g1iu
n
1 −

n∑
i=k+1

g1iu
n
1 ≥ −w̄(n− k)un1 ≥ −w̄

(
n− 1

2

)
un1 ,

so λn(g) ≥ −w̄
(
n−1
2

)
. Finally, it is easily verified that equality holds under the given

choice of g. □

Proof of Proposition 4. For zero inequality, we must have kz = x∗ = [I− ϕĝ]−1a∗ for

some k ∈ R. Thus a∗ = k[I−ϕĝ]z. By the budget constraint, ∥a∗∥2 = C = k2∥[I−ϕĝ]z∥2,
so

V ∗
single,eq = (a∗)T [I− ϕĝ]−2a = k2 =

C

∥[I− ϕĝ]z∥2
.

□
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Belhaj, M., S. Bervoets, and F. Deröıan (2016). Efficient networks in games with local

complementarities. Theoretical Economics 11 (1), 357–380.

Bimpikis, K., A. Ozdaglar, and E. Yildiz (2016). Competitive targeted advertising over

networks. Operations Research 64 (3), 705–720.

Bloch, F. and B. Dutta (2009). Communications networks with endogenous link strength.

Games and Economic Behavior 66 (1), 39–56.

Bloch, F. and N. Quérou (2013). Pricing in social networks. Games and Economic Behav-

ior 80 (1), 243–261.

Bochet, O., M. Faure, Y. Long, and Y. Zenou (2024). Perceived competition in networks.

Working paper available at SSRN: https://ssrn.com/abstract=3753987 .

Braga, A. A., R. Apel, and B. C. Welsh (2013). The spillover effects of focused deterrence

on gang violence. Evaluation Review 37 (3-4), 314–342.

Braga, A. A., D. M. Kennedy, E. J. Waring, and A. M. Piehl (2017). Problem-oriented

policing, deterrence, and youth violence: An evaluation of boston’s operation ceasefire.

In Gangs, pp. 513–543. Routledge.
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