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Abstract

We study a mechanism design problem where the allocation rule is random-

ized and transfers are contingent on outcomes. In this problem, an agent reports

his private information, and an exogenous randomized allocation rule assigns an

outcome based on the report. A planner designs an outcome-contingent trans-

fer to incentivize the agent to report truthfully. We say that the allocation

rule is implementable if such transfers exist. For this implementation problem,

we derive two sufficient and necessary conditions. Each has a geometric inter-

pretation. Moreover, when the allocation rule is implementable, we construct

transfers that implement the allocation rule.
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1 Introduction

A central topic in accounting is earnings management. Each year, firms are required

to report their annual economic activities to an auditing company in order to com-

pile financial statements. Auditors exercise a certain level of discretion in this task

due to reputation and potential legal implications. These financial statements hold

significant importance for the firm, as they directly impact future financing costs.

Furthermore, taxes are calculated based on these statements. In practice, some firms

resort to tactics such as window dressing, which involves inflating their reports to

present a more favorable financial picture. Firms may also engage in earning ma-

nipulation, deliberately under reporting their performance to minimize tax liabilities.

This prompts a natural question: is there a tax regime that could encourage firms to

report truthfully? If such a regime exists, what does it look like?

Similar challenges arise in the field of political science. For instance, on an annual

basis, each province in China reports its economic growth, fiscal surplus, expected

annual budget, and other relevant information to the Bureau of Statistics. This report

comprises high-dimensional data, encompassing all aspects of economic activity. The

Bureau of Statistics evaluates the overall economic condition of each province. The

evaluation is of particular interest to the provinces as it may influence their economic

policies in the future.1 Based on the evaluation, the central government determines

the fiscal transfers between provinces.2 Is it possible for the central government

to devise a transfer scheme that incentivizes every province to truthfully report its

economic condition?

We analyze these problems using a mechanism design approach. We study a

model where an agent knows the underlying state of the world, θ, which belongs

to a set Θ. The agent reports a state to an exogenous allocation rule, a function

π : Θ → ∆(X) mapping each state to a distribution over a finite outcome space X.

The agent’s valuation of the outcome x in state θ is given by v(θ, x). A planner

designs an outcome-contingent transfer t : X → R describing the agent’s monetary

1For example, many of China’s economic special zones and new areas are selected due to fast
economic growth, including Shenzhen Special Economic Zone, Shanghai Pudong New Area, and
Zhuhai Hengqin New Area in Guangdong. Once established as special economic zones or new areas,
a district enjoys special policy treatment, including tax reduction, relaxation of market access,
simplification of administrative approval, etc.

2The magnitude of transfer for each province is roughly ten billion dollars. The aggregate transfer
is roughly a trillion dollars.
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payoff as a function of the outcome. Our research question is whether there exists an

outcome-contingent transfer to induce the agent to report the state truthfully.

In the earnings management example, the agent is a firm that reports its financial

situation θ to an auditing company. The company’s auditing produces a financial

statement x. The allocation rule summarizes the auditor’s practices and protocol.

Then the government collects tax t(x) based on the financial statement. In the fiscal

transfer example, the agent is a province that reports its economic activities θ to the

Bureau of Statistics. The Bureau of Statistics assigns an economic evaluation x to the

province. The allocation rule summarizes the evaluation procedure. (The randomness

in the evaluation rule is to reduce a province’s incentive to manipulate its report.)

Then the central government assigns a transfer t(x) based on the evaluation.3

In these two examples, the transfer’s contingency on the evaluation (financial

statement) stems from the fact that different entities are responsible for evaluation

(auditing) and transfer (tax) assignments. Moreover, as the provincial (firm’s) eco-

nomic activity is high-dimensional, part of the Bureau of Statistics’ (auditor’s) job is

to simplify the task of transfer (tax) assignment for the central government.

The key novelty in our model is that the allocation rule allows for randomization

and that transfers depend on the allocation outcome rather than directly on the

report. When an allocation rule is deterministic, whether the transfer depends on

the report or the outcome is irrelevant. This is also known as the taxation principle

or tariff principle. In real life, we observe tariffs more often than direct revelation

mechanisms, because the set of possible type spaces may be hard to describe in reality

(Tadelis and Segal, 2005). So simplicity is a prominent advantage of tariffs and our

mechanism directly inherits this advantage when the type space is large.

Another motivation for our mechanism is that it could be useful in other mech-

anism design problems. The standard mechanism with report-contingent transfer

specifies a mapping that assigns to each type an allocation and a transfer. Our model,

instead, decouples this mapping into two functions, the allocation rule π : Θ→ ∆(X)

and the transfer rule t : X → R. This decomposition also appears in the canonical

mechanism in Doval and Skreta (2022). In their leading example (see their Section

3.1), the canonical mechanism is a mechanism with outcome-contingent transfers.4

3The transfer’s contingency on evaluations and the randomness in the evaluation/allocation rule
also arise from confidentiality concerns. If the transfer were to depend directly on the state, it would
reveal too much information about the state, as the transfer is publicly observable.

4In their leading example, the disclosure rule maps a report to a distribution over posterior beliefs,
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Our paper answers the question of when such transfers exist under the truthful re-

port (IC) constraint.

The taxation principle states that when an allocation rule is deterministic, whether

the transfer depends on the report or the outcome is irrelevant. However, if the al-

location rule is randomized, we show that it is harder to implement with outcome-

contingent transfers (see Observation 1). We say that the allocation rule is imple-

mentable with outcome-contingent transfers if there exist outcome-contingent trans-

fers such that it is optimal for the agent to report truthfully in each state.

Our main result is a characterization of implementable allocation rules. We collect

the agent’s valuation of all outcomes in state θ into a |X|-dimensional vector v(θ).

For each pair of states (θ, θ′) we define the allocation difference as the difference in

probabilities

dπ(θ, θ′) = π(θ)− π(θ′)

and the valuation loss as the agent’s difference in valuation in the two states:

vl(θ, θ′) = dπ(θ, θ′) · v(θ).

We collect the allocation differences into a |X|×|Θ|2 dimensional matrixDπ consisting

columns of dπ(θ, θ′), and all valuation losses vl(θ, θ′) into a valuation loss vector VL,

by ordering pairs of states (θ, θ′) in the same order.

Recall that a matrix’s positive kernel ker+ is the intersection of the kernel and

the positive orthant. We show that the allocation rule is implementable if and only

if VL lies in the dual cone of ker+(Dπ) (Theorem 1). Moreover, we offer another

geometric characterization. Each pair of distinct states (θ, θ′) determines an allocation

difference dπ(θ, θ′) and a valuation loss vl(θ, θ′). This (dπ(θ, θ′), vl(θ, θ′)) corresponds

to a point in R|X| × R. For all such points, we can construct their convex envelope

conv : R|X| → R. We show that the allocation rule is implementable if and only if

the convex envelope’s intercept conv(0), the value of conv evaluated at 0, is weakly

positive (Theorem 1).

Moreover, when the allocation rule is implementable with outcome-contingent

transfers, we show how transfer payments can be constructed (Proposition 1). In

particular, we show that transfers can be recovered from the subgradient of the convex

and the price depends only on the realized posterior belief. Their posterior belief is our allocation
outcome and their price is our transfer.
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envelope at dπ = 0. When the convex envelope intercept is strictly positive, we show

that the allocation rule is strictly implementable (Proposition 2).5

In addition, we show that the classic cyclic monotonicity condition of Rochet

(1987) is a necessary condition for implementation in our setup as well (Observa-

tion 1). However, without further assumptions on the valuation structure and the

allocation rule, cyclic monotonicity is not sufficient in general. Yet, we show that

cyclic monotonicity is also sufficient when the allocation measures {π(θ)}θ∈Θ are lin-

early independent (Proposition 3). Additionally, when there are fewer than exactly

four states, cyclic monotonicity is also sufficient (Proposition 5). Furthermore, when

{π(θ)}θ∈Θ are convex dependent, we show that it is without loss to only check whether

one candidate transfer can implement the allocation rule (Proposition 4).

1.1 Literature Review

Our paper contributes to the literature on implementation by studying randomized

allocation rules with outcome-contingent transfers. The implementation literature

has explored when allocation rules can be truthfully implemented by transfer that

depends on the report ; see Roberts (1979); Rochet (1987); McAfee and McMillan

(1988); Jehiel et al. (1999); Gui et al. (2004); Saks and Yu (2005); Bikhchandani

et al. (2006); Müller et al. (2007); Archer and Kleinberg (2008); Ashlagi et al. (2010);

Bergemann et al. (2012); Carroll (2012); Carbajal and Müller (2015, 2017); Kushnir

and Lokutsievskiy (2021); Frongillo and Kash (2021).

For single agent settings, Myerson (1981) shows the implementability condition is

the subgradient condition in a one-dimensional continuous-type environment. Müller

et al. (2007) and Archer and Kleinberg (2008) propose several equivalent conditions.

Rochet (1987) studies when an allocation rule is implementable in dominant strategy

mechanisms. He shows that the cyclic monotonicity condition is sufficient and nec-

essary for an allocation rule to be implementable. Bergemann et al. (2012) analyze

this implementability problem in Bayesian incentive-compatible mechanisms.

In quasilinear environments with a complete domain, Roberts (1979) shows that

a positive association of differences is necessary and sufficient for dominant-strategy

incentive compatibility. In addition, he derives another characterization in terms of

5We say that the allocation rule is strictly implementable with outcome-contingent transfers if
there exist outcome-contingent transfers such that it is strictly optimal for the agent to report
truthfully in each state.
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affine maximizers. For a selection of restricted domains, Bikhchandani et al. (2006)

characterize dominant-strategy incentive compatibility by weak (cyclic) monotonicity.

Gui et al. (2004) notice that this result holds for the unrestricted domain and for every

cube. Saks and Yu (2005) extend this result to any convex multi-dimensional type

space. Ashlagi et al. (2010) shows that if the closure of a domain is not convex,

then there exists a finite-valued monotone allocation rule that is not implementable.

Several more recent works (Kushnir and Lokutsievskiy, 2021; Carbajal and Müller,

2015, 2017) also identify some conditions under which weak monotonicity (2-cycle

monotonicity) is sufficient to implement the allocation rule. Frongillo and Kash (2021)

provide a unified framework nesting mechanisms and scoring rules and characterize

scoring rules for non-convex sets of distributions.

From a modeling perspective, our work is closely related to the literature of

Bayesian persuasion. Our randomized allocation rule can equivalently be seen as

a Blackwell experiment.6 Perez-Richet and Skreta (2022) study the receiver-optimal

Blackwell experiment when the sender can falsify the state of the world as the input of

the experiment at some cost. Lin and Liu (2024) study when a Blackwell experiment

is credible, i.e., when the sender cannot profitably deviate to another experiment while

fixing the marginal distribution of realizations. Their credibility also boils down to

a cyclic monotonicity condition. Yet, their cyclic monotonicity condition is ex-post

rather than ex-ante.

2 The Model

Primitives. We are given a finite set Θ of states. (Our main result Theorem 1 has

two sufficient and necessary conditions. The cone condition only applies to finite state

spaces. For infinite state space, the envelope condition still holds.) An agent observes

the state and sends a report to a predetermined allocation rule. An allocation rule π

maps a reported state to a distribution over a finite set of outcomes X = {x1, . . . , xn},
i.e., π : Θ→ ∆(X). Thus each π(θ) is a probability measure over the outcome space

6Nguyen and Tan (2021) study a model of Bayesian persuasion where the sender does not observe
the underlying state, commits to a Blackwell experiment, and privately observes the experiment
realization. The sender can misrepresent the experiment’s realization with some lying cost. The
cost depends on both the experiment realization and the message sent.
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X. We denote by π(x|θ) the probability assigned to x by the measure π(θ).

π(θ) = (π(x1|θ), π(x2|θ), · · · , π(xn|θ))⊤.

The allocation rule can be seen as outside of the planner’s influence, as in our

motivating examples, or can be interpreted as the planner’s objective. The agent’s

valuation for outcome x in state θ is equal to v(θ, x). We write v(θ) as the |X|-
dimensional vector consisting of entries v(θ, x) for all x ∈ X,

v(θ) = (v(θ, x1), v(θ, x2), · · · , v(θ, xn))
⊤.

Transfer Design. The agent’s total payoff is linear in the valuation and the trans-

fer. The transfer depends only on the outcome and we let t(x) denote the transfer

to the agent given outcome x. We use T to denote the n-dimensional transfer vector

consisting of entries t(x) for all x ∈ X,

T = (t(x1), t(x2), · · · , t(xn))
⊤.

We say that the allocation rule is implementable with outcome-contingent transfers

if there exists a vector T such that for all θ, θ′ ∈ Θ,

π(θ) · (v(θ) + T ) ≥ π(θ′) · (v(θ) + T ).

Compared to the standard implementation with report-contingent transfers, our no-

tion has the additional requirement that the transfer is linear in the allocation rule

π. That is, the report-contingent transfer takes the form of π(θ) · T .
For any transfer vector T that satisfies this incentive compatibility constraint,

any translation T + (c, c, · · · , c) also satisfies the condition. Thus, we are free to

impose an ex-ante budget balance condition. For example, suppose we are given a

prior distribution over the states. Given truthful reports, the allocation rule induces a

distribution over outcomes. Then we can impose an ex-ante budget balance condition,

i.e., Ext(x) = 0 where Ex is the expectation with respect to the random outcome x.

Problem Reformulation. Next, we reformulate the implementation problem into

the following geometric form. Given the set Π = {π(θ)|θ ∈ Θ} in Rn, we associate to
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π(θ)
v(θ)

v(θ) + T

Π

Supporting hyperplane of π(θ).

Figure 1: The Supporting Hyperplane

each vector π(θ) the vector v(θ) ∈ Rn. We ask if there exists a vector T ∈ Rn such

that for all π(θ), T + v(θ) is the outer normal of a supporting hyperplane of the set

Π at π(θ). That is, for all θ, θ′ ∈ Θ,

[π(θ)− π(θ′)] · (v(θ) + T ) ≥ 0.

Informally, we want a common adjustment vector T such that for all the points in

Π, the new vector v+ T is the outer normal of a supporting hyperplane of the set Π

(see Figure 1).

3 Main Results

We first provide an example where the allocation rule is implementable with standard

report-contingent transfers but not with outcome-contingent ones.

Example 1. There are four possible types and two outcomes: Θ = {0, 1
3
, 2
3
, 1},

X = {x1, x2}. The allocation rule is

π(θ) = (θ, 1− θ)⊤.

The valuation vector is

v(θ) = (θ, 0)⊤.

Note that report-contingent transfer t̃(θ) = −1
2
θ2 can implement the allocation rule.

We show that π is not implementable with outcome-contingent transfers and the

agent always has an incentive to misreport. For the agent with type θ, the payoff
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difference between truthful reporting and misreporting θ′ is

(θ − θ′)(θ + t(x1)− t(x2)).

If t(x1)−t(x2)+θ > 0, the agent would prefer to report θ′ = 1. If t(x1)−t(x2)+θ < 0,

the agent would prefer to report θ′ = 0. The agent with type θ that is not 0 or 1

would truthfully report if and only if θ = t(x2)− t(x1). Thus, any transfer that elicits

type 1/3 cannot elicit type 2/3. This example shows that our implementation notion

is stronger than the standard one.

We call

dπ(θ, θ′) = π(θ)− π(θ′)

the allocation difference between state θ and θ′. We define the valuation loss for state

θ when inputting θ′ to be the agent’s expected loss on the valuation

vl(θ, θ′) = dπ(θ, θ′) · v(θ).

We can calculate the agent’s expected deviation loss in state θ when reporting θ′ as

vl(θ, θ′) + dπ(θ, θ′) · T . Then the incentive compatibility constraint can be written as

for all θ, θ′ ∈ Θ,

vl(θ, θ′) + dπ(θ, θ′) · T ≥ 0.

Let VL ∈ R|Θ|×|Θ| denote the vector consisting entries vl(θ, θ′) by numerating all

(θ, θ′) pairs. We let Dπ denote a |X| × |Θ|2 dimensional matrix consisting columns

dπ(θ, θ′) with (θ, θ′) arranged in the same order as VL. We define the positive kernel

of Dπ to be

ker+(Dπ) =

{
λ ∈ R|Θ|×|Θ|

+ :
∑

θ,θ′∈Θ

λθθ′dπ(θ, θ
′) = 0

}
.

This set is non-empty as we can set λθ1θ2 = λθ2θ1 = 1 and all other entries to be

zero. Since the positive kernel is the intersection between the kernel of Dπ (a linear

subspace) and the nonnegative orthant, it is a finitely generated convex cone. Its

dual cone is given by

[ker+(Dπ)]∗ = {y ∈ R|Θ|×|Θ| |y · λ ≥ 0,∀λ ∈ ker+(Dπ)}.
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We append the valuation loss to the allocation difference vector to get a new set

of vectors

D = {(dπ(θ, θ′), vl(θ, θ′))|θ ̸= θ′ ∈ Θ},

which we call the difference set. We let conv(D) denote the convex envelope of the

set D

conv(D)(·) = sup{g(·)|g : Rn → R is convex and g(dπ(θ, θ′)) ≤ vl(θ, θ′),∀θ ̸= θ′ ∈ Θ}.

We call conv(D)(0) the convex envelope intercept.

Now we are ready to characterize the implementation condition.

Theorem 1. The following are equivalent.

1. The allocation rule is implementable with outcome-contingent transfers.

2. VL ∈ [ker+(Dπ)]∗.

3. The convex envelope intercept is weakly positive.

dπ

vl

O

Figure 2: An Illustration of Convex Envelope

We provide a geometric example to use the last condition in Theorem 1 to check

implementation. Suppose there are three states Θ = {θ1, θ2, θ3} and two outcomes.

The allocation rule is π(θ1) = (1, 0)T , π(θ2) = (2
3
, 1
3
)T and π(θ3) = (0, 1)T . The agent’s

valuations are v(θ1) = (1, 0)T , v(θ2) = (1, 2)T , v(θ3) = (0, 1)T . Then we construct the

difference set

D = {((1
3
,−1

3
),
1

3
), ((−1

3
,
1

3
),
1

3
), ((1,−1), 1), ((−1, 1), 1), ((2

3
,−2

3
),−2

3
), ((−2

3
,
2

3
),
2

3
)}.

10



Since the entries of dπ(θ, θ′) sum up to zero, we can identify each dπ with an element

in R and plot them in Figure 2. The red dashed line is the convex envelope of D and

the value of the convex envelope evaluated at 0 is 0. So by Theorem 1, the allocation

rule is implementable with outcome-contingent transfers.

We illustrate the intuition for the necessity of the convex envelope intercept con-

dition. Suppose Θ = {θ1, θ2, · · · } and vl(θ1, θ2) + vl(θ2, θ1) < 0 (see the left panel of

Figure 3). Then, vl(θ1, θ2) + vl(θ2, θ1) < 0 implies conv(D)(0) < 0, as dπ(θ1, θ2) =

−dπ(θ2, θ1). Similar to Example 1, any transfer T that elicits θ1 cannot elicit θ2. To

elicit θ1, we must have dπ(θ1, θ2) · T + vl(θ1, θ2) ≥ 0. As dπ(θ1, θ2) = −dπ(θ2, θ1), the
transfer T must have the opposite effect on type θ2. That is, whenever we use some

transfer to ensure dπ(θ1, θ2)·T+vl(θ1, θ2) ≥ 0, this leads to dπ(θ2, θ1)·T+vl(θ2, θ1) < 0,

as the intercept is preserved (see the right panel of Figure 3). In fact, the condition

vl(θ1, θ2) + vl(θ2, θ1) ≥ 0 is exactly the weak monotonicity and so it must hold for

implementation. But the opposing effect around the intercept is driving the necessity

of conv(D)(0) ≥ 0. The intuition carries over in general such that if conv(D)(0) < 0,

for all transfer T , at least one pair (θi, θj) has dπ(θi, θj) · T + vl(θi, θj) < 0.

dπ

vl

O

(θ2, θ1)

(θ1, θ2)
dπ

vl + T · dπ

O
(θ2, θ1)

(θ1, θ2)

Figure 3: The Effect of Transfer

Next, we prove the necessity of the second statement, i.e., 1⇒ 2. If the allocation

rule is implementable with outcome-contingent transfers, there exists T such that for

all θ, θ′ ∈ Θ

vl(θ, θ′) + dπ(θ, θ′) · T ≥ 0.

For any λθθ′ > 0, we have

λθθ′(vl(θ, θ
′) + dπ(θ, θ′) · T ) ≥ 0.
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For any λ ∈ ker+(Dπ), summing over all θ, θ′, the second term is zero. What left is∑
θ,θ′

λθθ′vl(θ, θ
′) ≥ 0.

Since this holds for all λ ∈ ker+(Dπ), we have VL ∈ [ker+(Dπ)]∗.

The equivalence between statements 2 and 3 follows by a property of the convex

envelope (see Boyd and Vandenberghe (2004) p.119)

conv(D)(z) = inf

{ ∑
θ,θ′∈Θ

λθθ′vl(θ, θ
′)
∣∣ ∑
θ ̸=θ′∈Θ

λθθ′ = 1, λθθ′ ≥ 0,
∑

θ,θ′∈Θ

λθθ′dπ(θ, θ
′) = z

}
,

conv(D)(0) = inf

{
λ · VL

∣∣ ∑
θ ̸=θ′∈Θ

λθθ′ = 1, λ ∈ ker+(Dπ)

}
.

Then conv(D)(0) ≥ 0 is equivalent to λ · VL ≥ 0 for all λ ∈ ker+(Dπ), which is

VL ∈ [ker+(Dπ)]∗

The sufficiency condition states that as long as the convex envelope intercept is

weakly positive, the allocation rule is implementable with outcome-contingent trans-

fers. Now we construct a transfer T such that for all θ, θ′ ∈ Θ, vl(θ, θ′)+dπ(θ, θ′)·T ≥
0. Suppose conv(D)(0) ≥ 0. Let T be the negative of any subgradient of conv(D)(·)
at dπ = 0, i.e.,

−T ∈ ∂conv(D)(0)

where ∂conv(D)(0) denotes the subdifferential of conv(D)(·) at 0. By the definition

of the convex envelope and subgradient, for all θ, θ′ ∈ Θ,

vl(θ, θ′) ≥ conv(D)(dπ(θ, θ′)) ≥ conv(D)(0)− T · dπ(θ, θ′).

vl(θ, θ′) + dπ(θ, θ′) · T ≥ conv(D)(0) ≥ 0.

Geometrically, we rotate the difference set D around (0, conv(D)(0)) such that the

convex envelope is above the vl = 0 plane while preserving the intercept with the

vl-axis. In the example in Figure 2, all deviation losses will be positive after the

rotation, as shown in Figure 4.

We summarize the construction of the transfer.

Proposition 1. If the allocation rule is implementable with outcome-contingent trans-

12



dπ

vl + T · dπ

O

Figure 4: The Deviation Loss with Transfer

fers, any T ∈ −∂conv(D)(0) can implement the allocation rule.

The convex envelope intercept provides a measure of robustness of the imple-

mentation. Given the transfer identified above, the deviation loss is always above

conv(D)(0). (This is reminiscent of the definition of ϵ-Nash equilibrium.) Given this

observation, we can characterize when an allocation rule is strictly implementable,

i.e., the incentive to report truthfully is strict. We say that the allocation rule is

strictly implementable if there exists a transfer T such that for all θ ̸= θ′ ∈ Θ,

π(θ) · (v(θ) + T ) > π(θ′) · (v(θ) + T ).

Proposition 2. If the convex envelope intercept is strictly positive, the allocation rule

is strictly implementable.

Similar to the definition of ϵ-Nash equilibrium, we can also adopt a weaker condi-

tion on implementation. For any ϵ, we say that an allocation rule is ϵ-implementable

with outcome-contingent transfers if there exists a transfer T such that the total gain

from deviation is always less than ϵ, i.e., for all θ, θ′ ∈ Θ,

π(θ′) · (v(θ) + T )− π(θ) · (v(θ) + T ) ≤ ϵ.

Corollary 1. The allocation rule is −conv(D)(0)-implementable.

13



4 Discussions

Rochet (1987) studies the implementability condition with report-contingent transfer

and shows that the cyclic monotonicity is sufficient and necessary. Formally, cyclic

monotonicity is equivalent to the existence of a function t̃ : Θ → R such that for all

θ, θ′,

π(θ) · v(θ) + t̃(θ) ≥ π(θ′) · v(θ) + t̃(θ′).

Note the difference between report-contingent transfer and outcome-contingent trans-

fer. Our implementation additionally requires that t̃ is linear in the allocation rule.

If an allocation rule is implementable with outcome-contingent transfers, then the

function t̃ must exist: t̃(θ) = π(θ) · T . We thus obtain a necessary condition.

Observation 1. The allocation rule is implementable with outcome-contingent trans-

fers only if vl(·, ·) satisfies cyclic monotonicity, i.e., for all θ1, · · · , θk ∈ Θ,

vl(θ1, θ2) + vl(θ2, θ3) + · · ·+ vl(θk, θ1) ≥ 0.

Yet, the condition of cyclic monotonicity does not guarantee the existence of

outcome-contingent transfers. In Example 1, a report-contingent transfer can imple-

ment the allocation rule. Thus, cyclic monotonicity holds. However, no outcome-

contingent transfer can implement the allocation rule. Hence, our condition in The-

orem 1 is stronger than cyclic monotonicity.

4.1 Special Cases

Our model imposes no assumptions on the allocation rule, the state space, or the

valuation structure. Next, we shall investigate some special cases where we impose

more structure on each of these model primitives. We first show that when {π(θ)}θ∈Θ
are linearly independent, cyclic monotonicity is also sufficient.

Proposition 3. When {π(θ)}θ∈Θ are linearly independent, the allocation rule is im-

plementable with outcome-contingent transfers if and only if vl(·, ·) satisfies cyclic

monotonicity.

Proof of Proposition 3. Observation 1 shows the necessity. We only need to show

the sufficiency. By our previous discussion, cyclic monotonicity already ensures the
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existence of t̃. We only need to show that there exists a transfer T ∈ Rn such that

for all θ ∈ Θ,

π(θ) · T = t̃(θ).

We rewrite it in matrix form. We define Π be the |Θ| × n matrix representing

π : θ → ∆(X) and T̃ be the |Θ|-dimension column vector representing t̃(·) : Θ→ R.
So the matrix form of the above linear system is

ΠT = T̃ . (1)

The vector T̃ lies in the span of column vectors of Π. Thus, there exists a T satisfying

the above matrix equation if and only if rank(Π) = rank(Π, T̃ ) where Π, T̃ repre-

sents the augmented matrix. Since π(θ) is linearly independent, rank(Π) = |Θ| =
rank(Π, T̃ ).

This proposition highlights the difference between allocation rules that are im-

plementable with outcome-contingent transfers versus report-contingent transfers. If

the cardinality of the outcomes is larger than the cardinality of states, then we have

more flexibility in setting t(x) to induce truthful reports. That is, generically, a ma-

trix Π such that |X| ≥ |Θ| guarantees the existence of a solution to Equation (1).

Conversely, when |X| < |Θ|, it is more likely that no solution exists. This insight

sheds light on the motivating examples. How far are the allocation rules that are

implementable with outcome-contingent transfers compared to the ones with stan-

dard transfers? The answer largely lies in the granularity of outcomes versus states.

In the political transfer example, as the state is high-dimensional, it is very hard to

implement with outcome-contingent transfers if the evaluations are finite. However,

the two implementation notions are closer given a larger evaluation set.

Next, we show that in some cases, it is easy to check whether an allocation rule is

implementable. Consider the support problem in Figure 5. The outcome-contingent

transfer rule is the common vector adjustment in the vector field that makes v(θ)+T

(the outer normal of) a supporting hyperplane. Consider the point π(θ4) in Fig-

ure 5. As π(θ4) is in the convex hull of {π(θ)|θ ∈ Θ}, no hyperplane can support

{π(θ)|θ ∈ Θ}. Therefore, the outer normal v(θ4) + T must be zero and T = −v(θ4).7

7Formally, v(θ4) + T can be non-zero but must be orthogonal to the affine hull of {π(θ)|θ ∈ Θ}.
But then it is without loss to consider only T = −v(θ4).
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Consequently, this is the only candidate transfer that we need to check. This insight

carries over in general.

π(θ4)

π(θ1)

π(θ2) π(θ3)

v(θ1)

v(θ2)

v(θ3)v(θ4)

v(θ1) + T

Supporting hyperplane of π(θ1).

Figure 5: The Support Problem

Proposition 4. Suppose that some π(θi) is in the interior of the convex hull of

{π(θ)|θ ∈ Θ}. The allocation rule π is implementable with outcome-contingent trans-

fers if and only if T = −v(θi) implements π.

We can apply this result to our Example 1. As π(θ2) is in the interior of the convex

hull of {π(θ)|θ ∈ Θ}, it is without loss to consider only the transfer T = −v(θ2). But
this transfer cannot elicit θ3 to report truthfully. Thus, the allocation rule is not

implementable.

Note that this proposition has no bite if the points {π(θ)|θ ∈ Θ} are in a convex

position (also known as convex independent). On the other hand, when {π(θ)|θ ∈ Θ}
are convex dependent, implementation is generally difficult. Even when such an

allocation can be implemented, the transfer rule is very restricted. In Appendix B,

we consider the planner’s design problem where he optimizes over allocation-transfer

rules. We show that for a general objective function, it is without loss to restrict

attention to convex independent allocation rules.

In addition, we show that when the state space is small, cyclic monotonicity is

also sufficient.
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Proposition 5. When |Θ| ≤ 3, the allocation rule is implementable with outcome-

contingent transfers if and only if vl(·, ·) satisfies cyclic monotonicity.

By Proposition 3, the conclusion follows when π(θ) are linearly independent. Now

suppose π(θ) are linearly dependent. When |Θ| = 2, linear dependence of π(θ)

implies π(θ1) = π(θ2) and the conclusion holds trivially. When |Θ| = 3, the linear

dependence of π(θ) is equivalent to convex dependence. Suppose that π(θ1) is a

convex combination of π(θ2) and π(θ3). By Proposition 4, it is without loss to take

T = −v(θ1). Given this transfer, all the incentive compatibility constraints reduce to

weak monotonicity.8 Thus, cyclic monotonicity is also sufficient.

The argument above fails catastrophically for |Θ| ≥ 4. First, when there are more

than three states, linear dependence does not imply convex dependence. Second,

even if convex dependence of {π(θ)|θ ∈ Θ} holds, we can no longer reduce all IC

constraints to weak monotonicity. This occurs in Example 1, where |Θ| = 4 and

cyclic monotonicity holds. Thus, when |Θ| ≥ 4, cyclic monotonicity may no longer

be sufficient.

In the incentive compatibility constraint, we take expectation of the random out-

come. Thus, we can view the implementation with outcome-contingent transfers as

an interim condition. A more demanding notion can require the allocation rule to

be ex-post implementable with outcome-contingent transfers, i.e., if there exists a

transfer t such that for all θ and x ∈ supp{π(·|θ)},

v(θ, x) + t(x) ≥ v(θ, x′) + t(x′),∀x′ ∈ X.

It turns out that this ex-post implementability is equivalent to the following sufficient

condition on the valuation structure.9

8To see this, let π(θ1) = λπ(θ2) + (1 − λ)π(θ3). Given T = −v(θ1), the incentive compatibility
requires that for all i ̸= j ∈ {1, 2, 3},

π(θi) · (v(θi)− v(θ1)) ≥ π(θj) · (v(θi)− v(θ1)).

When i = 1, the inequality holds trivially. When j = 1, the inequality reduces to weak monotonicity
between θi and θ1. When i, j ∈ {2, 3}, replacing π(θj) with

π(θ1)− λiπ(θi)

1− λi

where λi = λ if i = 2 and λi = 1 − λ otherwise, the inequality also reduces to weak monotonicity
between θi and θ1.

9We thank one anonymous referee for providing this result.
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Proposition 6. The allocation rule is implementable with outcome-contingent trans-

fers if for any sequence of (θ1, x1), · · · , (θm, xm), (θm+1, xm+1) = (θ1, x1) where xi ∈
supp{π(·|θi)},

m∑
i=1

v(θi, xi) ≥
m∑
i=1

v(θi, xi+1).

Another important case is when the agent’s preference is separable in the state

and outcome. We say that the agent’s preference is additively separable if there exists

v1 and v2 such that

v(θ, x) = v1(θ) + v2(x).

It includes the case where the agent’s preference is state-independent. State-independent

preference, or transparent motive, has been widely studied in the communication and

persuasion literature (see, for example, Chakraborty and Harbaugh, 2010; Lipnowski

and Ravid, 2020; Lipnowski et al., 2022). When the agent’s preference is additively

separable, the transfer t(x) = −v2(x) can implement all allocation rules. Moreover,

the converse is true as well, i.e., this is the only preference where all allocation rules

are implementable with outcome-contingent transfers.

5 Conclusion

We study whether we can implement a randomized allocation rule with outcome-

contingent transfers. For this implementation, we characterize sufficient and neces-

sary conditions. One natural extension is to study a principal’s revenue maximization

problem when the agent reports through a noisy signal, which can be viewed as our

allocation rule. The principal allocates one indivisible item conditional on the mes-

sage generated by the signal. Given the agent’s IR constraint, the principal designs

transfers to maximize revenue. We leave this question to future research.
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A Omitted Proofs

Proof of Theorem 1. 1 ⇒ 2. If the allocation rule is implementable with outcome-

contingent transfers, there exists T such that for all θ, θ′ ∈ Θ

vl(θ, θ′) + dπ(θ, θ′) · T ≥ 0.

For any λθθ′ > 0, we have

λθθ′(vl(θ, θ
′) + dπ(θ, θ′) · T ) ≥ 0.

For any λ ∈ ker+(Dπ), summing over all θ, θ′,∑
θ,θ′

λθθ′vl(θ, θ
′) ≥ 0

we have VL ∈ [ker+(Dπ)]∗.

2 ⇒ 3. If VL ∈ [ker+(Dπ)]∗, the optimal value of following linear programming

problem is zero.

min
∑

θ,θ′∈Θ

λθθ′vl(θ, θ
′)

s.t.
∑

θ,θ′∈Θ

λθθ′dπ(θ, θ
′) = 0,

λθθ′ ≥ 0.

(2)

Then, for any λθθ′ ≥ 0 satisfies
∑

θ,θ′∈Θ λθθ′dπ(θ, θ
′) = 0 and

∑
θ ̸=θ′∈Θ λθθ′ = 1, we

have
∑

θ,θ′∈Θ λθθ′vl(θ, θ
′) ≥ 0.

By the definition of convex envelope,10

conv(D)(z) = inf{
∑

θ,θ′∈Θ

λθθ′vl(θ, θ
′)
∣∣ ∑
θ ̸=θ′∈Θ

λθθ′ = 1, λθθ′ ≥ 0,
∑

θ,θ′∈Θ

λθθ′dπ(θ, θ
′) = z}.

Thus we get conv(D)(0) ≥ 0.

3 ⇒ 1. Since conv(D)(0) ≥ 0, the convex hull of set D, conhull(D), and the

convex set {(0, l)
∣∣l < 0,0 ∈ Rn} have no intersection. By Separating Hyperplane

10Here we adopt the convention that inf ∅ = +∞.
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Theorem, there exists a non-zero vector (T̄ , α) where T̄ ∈ Rn, α ≥ 0 such that for

any (dπ(θ, θ′), vl(θ, θ′)) ∈ D and l < 0 we have

dπ(θ, θ′) · T̄ + αvl(θ, θ′) > αl (3)

If α = 0, we get dπ(θ, θ′) · T̄ > 0 and dπ(θ′, θ) · T̄ > 0. But dπ(θ, θ′)+dπ(θ′, θ) = 0,

a contradiction. Then it must be that α > 0. Set T = T̄
α
, then by (3)

dπ(θ, θ′) · T + vl(θ, θ′) > l.

As l < 0, take the supremum of l,

dπ(θ, θ′) · T + vl(θ, θ′) ≥ 0.

This implies that T is the transfer that implements the allocation rule.

Proof of Proposition 4. The “if” part is obvious and we prove the “only if” part.

Suppose that the allocation rule {π(θ)} is implementable. We assume that the

transfer T ′ implements this allocation rule. Since π(θi) is in the interior of the

convex hull of {π(θ)|θ ∈ Θ}, there exists λ(θ) > 0 such that
∑

θ ̸=θi
λ(θ) = 1 and

π(θi) =
∑

θ ̸=θi
λ(θ)π(θ).

By the incentive-compatible constraint, we have that for any θ ̸= θi,

λ(θ)π(θi) · (v(θi) + T ′) ≥ λ(θ)π(θ) · (v(θi) + T ′).

Sum them up, we get

π(θi) · (v(θi) + T ′) ≥ π(θi) · (v(θi) + T ′)

Consequently, all above inequalities must be equalities

π(θi) · (v(θi) + T ′) = π(θ) · (v(θi) + T ′)

for all θ ̸= θi.

Next, we verify that T = −v(θi) also implements the allocation rule. For any
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θ, θ′ ∈ Θ,

π(θ) · (v(θ) + T ) = π(θ) · (v(θ) + T ′)− π(θ) · (v(θi) + T ′)

≥ π(θ′) · (v(θ) + T ′)− π(θi) · (v(θi) + T ′)

= π(θ′) · (v(θ) + T ′)− π(θ′) · (v(θi) + T ′)

= π(θ′) · (v(θ) + T ).

Thus T = −v(θi) implements the allocation rule {π(θ)}θ∈Θ.

Proof of Proposition 5. Observation 1 shows the necessity. We only need to show

sufficiency. When {π(θ)}θ∈Θ are linearly independent, the conclusion holds by Propo-

sition 3. Now suppose {π(θ)}θ∈Θ are linearly dependent.

When |Θ| = 1, the problem is trivial. When Θ = {θ1, θ2}, the only linearly

dependent case is π(θ1) = π(θ2). It trivially satisfies the cyclic monotonicity condition

and the allocation rule is implementable.

Now suppose Θ = {θ1, θ2, θ3}. The result trivially holds when π(θ1) = π(θ2) =

π(θ3). For the other cases, there is a unique t ∈ [0, 1] such that

π(θ3) = tπ(θ1) + (1− t)π(θ2) (4)

and π(θ1) ̸= π(θ2). This holds without loss of generality, since {π(θ)}θ∈Θ are linearly

dependent and π(θ) ≥ 0. Consequently, the dimension of ker+(Dπ) is 1. For any

λ ∈ ker+(Dπ), the coefficient of π(θi) in
∑

θ,θ′∈Θ λθθ′dπ(θ, θ
′) is∑

j ̸=i

(λθiθj − λθjθi).

Since the dimension of the kernel space is 1, by (4), there exists a real number K

such that ∑
j ̸=1

(λθ1θj − λθjθ1) = Kt∑
j ̸=2

(λθ2θj − λθjθ2) = K(1− t)∑
j ̸=3

(λθ3θj − λθjθ3) = −K

(5)
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Take any λ ∈ ker+(Dπ). If there exists a cycle (s1, s2, · · · , sk) ⊆ Θ such that

λs1s2 × · · · × λsκs1 ̸= 0. Then let

y = min{λs1s2 , · · · , λsκs1} > 0,

and update the values of λs1s2 , λs2s3 , · · · , λsκs1 as the following:

λs1s2 ← λs1s2 − y

· · ·

λsκs1 ← λsκs1 − y

Let λ∗ denote the updated value. λ∗ still satisfies equation (5). This implies λ∗ ∈
ker+(Dπ).

∑
θθ′

λθθ′vl(θ, θ
′)−

∑
θθ′

λ∗
θθ′vl(θ, θ

′) = y
κ∑

i=1

vl(si, si+1) ≥ 0.

by cyclic monotonicity. So it suffices to show that for all λ∗ ∈ ker+(Dπ), we have

λ∗ · VL ≥ 0.

Thus, we can assume that there is no cycle that (s1, s2, · · · , sk) such that λs1s2 ×
· · · × λsκs1 ̸= 0. As |Θ| = 3, there must be a θi such that

λθjθi = 0, ∀j ̸= i.

We say that such i has the lowest topological order. And there must be a θi such that

λθiθj = 0, ∀j ̸= i.

We say that such i has the highest topological order. We consider two cases.

Case 1: K ≥ 0. The lowest topological order index i must be 1 or 2. By symmetry,

we assume that it is 1. And the highest topological order index must be 3. Then by

(5),

λθ1θ2 + λθ1θ3 = Kt,

λθ2θ3 − λθ1θ2 = K(1− t).
(6)
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We calculate VL · λ,∑
θθ′

λθθ′vl(θ, θ
′) = λθ1θ2vl(θ1, θ2) + λθ1θ3vl(θ1, θ3) + λθ2θ3vl(θ2, θ3)

= λθ1θ2vl(θ1, θ2) + λθ1θ3 [π(θ1)− π(θ3)] · v(θ1) + λθ2θ3 [π(θ2)− π(θ3)] · v(θ2)

= λθ1θ2vl(θ1, θ2) + (1− t)λθ1θ3vl(θ1, θ2) + tλθ2θ3vl(θ2, θ1)

= Kt(1− t)(vl(θ1, θ2) + vl(θ2, θ1)) + tλθ1θ2(vl(θ1, θ2) + vl(θ2, θ1))

≥ 0

where the third equality follows by replacing π(θ3) with tπ(θ1)+(1− t)π(θ2), and the

last equality follows by (6).

Case 2: K < 0. The highest topological order index i must be 1 or 2. By

symmetry, we assume that it is 1. And the lowest topological order index must be 3.

Then by (5),

λθ2θ1 + λθ3θ1 = −Kt,

λθ3θ2 − λθ2θ1 = −K(1− t).

If t = 0, then λθ2θ1 = λθ3θ1 = 0 and vl(θ3, θ2) = 0, the value
∑

θθ′ λθθ′vl(θ, θ
′) = 0. If

t > 0, then∑
θθ′

λθθ′vl(θ, θ
′) = λθ3θ1vl(θ3, θ1) + λθ3θ2vl(θ3, θ2) + λθ2θ1vl(θ2, θ1)

=
t− 1

t
λθ3θ1vl(θ3, θ2) + λθ3θ2vl(θ3, θ2) +

1

t
λθ2θ1vl(θ2, θ3)

=
λθ2θ1

t
(vl(θ2, θ3) + vl(θ3, θ2))

≥ 0

Hence, we have VL ∈ [ker+(Dπ)]∗. By Theorem 1, the allocation rule is imple-

mentable with outcome-contingent transfers.

Proof of Proposition 6. By Kantorovich Duality (Theorem 5.10 in Villani et al. (2009)),

there exists t : X → R such that for all for all θ and x ∈ supp{π(·|θ)},

v(θ, x) + t(x) ≥ v(θ, x′) + t(x′), ∀x′ ∈ X

if and only if λ∗ = µ0(θ)π(x|θ) is optimal solution for the following optimal transport
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problem,

max
λ∈∆(Θ×X)

∑
θ,x

λ(θ, x)v(θ, x)

s.t.λθ = µ0, λX = ν

where µ0 is a full-support distribution on Θ and ν(x) =
∑

θ∈Θ µ(θ)π(x|θ). Again by

Theorem 5.10 in Villani et al. (2009), λ∗ is the solution of above optimal transport

problem if and only if for any sequence (θ1, x1), · · · , (θm, xm), (θm+1, xm+1) = (θ1, x1)

where (θi, xi) ∈ supp{λ∗},

m∑
i=1

v(θi, xi) ≥
m∑
i=1

v(θi, xi+1).

Note that (θi, xi) ∈ supp{λ∗} if and only if xi ∈ supp{π(·|θi)}.

Proof of Claim: All allocation rules are implementable with outcome-contingent trans-

fers if and only if the agent’s preference is additively separable.

The “if” part is taken care of by transfer t(x) = −v2(x). The “only if” part:

Suppose all allocation rules are implementable with outcome-contingent transfers.

Then we know that for any {π(θ)}θ∈Θ, by Observation 1, vl(·, ·) satisfies the cyclic

monotonicity condition. Then for any θ ̸= θ′ ∈ Θ, x ̸= x′ ∈ X. If we consider

π(x|θ) = 1, π(x′|θ′) = 1, the cyclic monotonicity condition requires that

v(θ, x) + v(θ′, x′) ≥ v(θ′, x) + v(θ, x′).

If we consider π(x′|θ) = 1, π(x|θ′) = 1, the cyclic monotonicity condition requires

that

v(θ, x) + v(θ′, x′) ≤ v(θ′, x) + v(θ, x′).

Then we know that for any θ ̸= θ′ ∈ Θ, x ̸= x′ ∈ X, we must have v(θ, x) −
v(θ, x′) = v(θ′, x) − v(θ′, x′). Then fix x0 ∈ X, then there is v2 : X → R such

that v(θ, x) − v(θ, x0) = v2(x) for all θ ∈ Θ. Thus we let v1(θ) = v(θ, x0), then

v(θ, x) = v1(θ) + v2(x) which implies the agent’s preference is additive separable.
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B Optimization over Allocation Rules

In this section, we take allocation rules as endogenous and consider a design problem.

The planner’s ex-post payoff function is f(θ, x, t). The planner sets up an outcome-

contingent allocation and transfer rule (π(θ), T ) to maximize expected payoff

Eθ{
∑
x

π(x|θ)f(x, θ, t(x))}

subject to the IC constraint

∀θ, θ′ ∈ Θ, π(θ) · (v(θ) + T ) ≥ π(θ′) · (v(θ) + T )

and IR (participation) constraint

∀θ ∈ Θ, π(θ) · (v(θ) + T ) ≥ 0.

We show that it is without loss to restrict attention to convex independent allocation

rules.

Proposition 7. It is without loss for the planner to focus on convex independent

allocation rules.

Proof. Suppose that (π, T ) satisfies the IC and IR constraints. We show that there is

a convex independent allocation rule π′ such that (π′, T ) yields a weakly larger payoff

for the planner.

Let Θ′ ⊂ Θ collect all θ such that π(θ) is the extreme point of the convex hull of

{π(θ)|θ ∈ Θ}. Fix some θi ∈ Θ. There exists λ(·) : Θ′ → R≥0 such that

π(θi) =
∑
θ∈Θ′

λ(θ)π(θ) and
∑
θ∈Θ′

λ(θ) = 1.

Note that the planner’s expected payoff conditional on θi is∑
x

π(x|θi)f(x, θi, t(x)) =
∑
θ∈Θ′

λ(θ)
∑
x

π(x|θ)f(x, θi, t(x)).

28



There must exist some θ′i ∈ Θ′ such that∑
x

π(x|θ′i)f(x, θi, t(x)) ≥
∑
x

π(x|θi)f(x, θi, t(x)).

We define a new allocation rule π′ by π′(θi) = π(θ′i). Note that (π′, T ) generates a

weakly higher payoff for the planner. Lastly, by Proposition 4, agent θi’s payoff does

not change,

(v(θi) + T ) · π(θi) = (v(θi) + T ) · π′(θi).

Thus, IR still holds. The set of IC constraints is smaller due to

{π′(θ)|θ ∈ Θ} = {π(θ)|θ ∈ Θ′} ⊂ {π(θ)|θ ∈ Θ}

Thus, IC still holds.
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