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Abstract
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equilibrium payoff, with and without budget constraints, which has clear geometric in-
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1 Introduction

Sender’s commitment power ensures the efficiency of Bayesian persuasion (BP) Ka-

menica and Gentzkow [2011] but is usually absent from real-world contexts. Literature

has started discussing the optimal information design when Sender only has limited com-

mitment power. In the limited commitment scenario, Sender is unable to demonstrate

that the information is authentic and sent according to the ex-ante committed proto-

col. To manage the absence of commitment power, Salamanca [2021] proposes mediated

communication (MD) adheres to the concept proposed by Myerson [1982], Forges [1986].

MD includes a mediator or a noisy communication device beyond Sender and Receiver.

Sender communicates with the mediator only while the mediator sends Receiver a message

according to the pre-committed signaling scheme. However, Sender in MD can obtain

credibility only through an incentive-compatible signaling scheme, which largely restricts

the Sender’s design and thus can substantially reduce the Sender’s payoff. We notice

that a money-burning tactic Austen-Smith and Banks [2000] emerges to assist Sender

in gaining credibility, which inspires us to explore whether incorporating money-burning

tactics with MD can better off the Sender’s payoff.

We also found that MD with money-burning tactics has been applied as the commu-

nication paradigm in the emerging Web 3.0 economy as proposed by Drakopoulos et al.

[2023]. For instance Shaker et al. [2021], some Web 3.0 financial companies sell their prod-

ucts to consumers through smart contracts. Those companies input the risk information

into the smart contracts. The smart contracts generate the risk assessment results with

randomness to the consumers according to the pre-decided and transparent algorithms.

Here, those companies are Sender while consumers are Receivers. The smart contracts are

the mediator. The gas fee or token transferred from the financial companies to the con-

sumers is the money-burning tactics. In all Web 3.0 business practices, the transparent

and auto-processed algorithms simultaneously play the role of a trustworthy mediator for

enforcing the pre-committed message-design protocol and enabling the money transfer-

ring by gas fee. Therefore, MD with money burning is a general communication protocol

in the Web 3.0 economy.

Here, we propose a novel communication protocol called mediated communication with

money-burning mechanism (or MDMB for short), whereby Sender employs the money-

burning tactic to obtain credibility. The MDMB includes two parts pre-determined by
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Sender: the information-design rule for the mediator sending the message and the extent

of money-burning based on the Sender’s report. We mainly investigate our proposed

communication protocol under a substantive assumption: Sender has state-independent

preferences over the Receiver’s actions. This transparent-motives assumption simplifies

the analysis while retaining substantial real-world economic applications.

Analyzing the MDMB is technically challenging. Combining mechanism design with

information design essentially amplifies the difficulty of searching and analyzing the opti-

mal MDMB. The burned money can contain the piece of information about the Sender’s

type, according to which Receiver can select her action. Therefore, the outcomes of

MDMBs are able to influence Receiver’s action that Sender cannot commit, which vi-

olates the full-commitment condition for applying the revelation principle Bester and

Strausz [2001]. Consequently, the revelation principle cannot be applied to simplify the

non-convex optimal MDMBmechanism problem restricted by the equilibrium constraints.

We develop a new revelation principle for MDMB to decompose the MDMB into a

separable sequential process. By the revelation principle for MDMB, Sender first designs

the message and then designs the amount of money burning. The design ensures that the

amount of money burning does not contain any extra information than the message about

the Sender’s type. The decomposition enables us to apply the belief-based approach to

convert the non-convex optimal MDMB problem restricted by the equilibrium constraints

to a simpler optimization problem subject to incentive-compatible and Bayes-plausible

constraints. The revelation principle for MDMB contributes a new type of revelation

principle for the information design problem with limited commitment, in addition to the

revelation principle for the dynamic mechanism selection game developed in Doval and

Skreta [2022].

The revelation principle for MDMB enables us to fully characterize the Sender’s max-

imum equilibrium payoff, referred to as the value of MDMB, and the associated optimal

MDMB design. Theorem 1 geometrically shows that the value of MDMB is the min-

imum value over all concavification values of the Sender’s subjective payoff functions1.

The above geometrical analysis discloses the mechanism by which money burning en-

ables the commitment power. The amount of money burning varies over the message and

guarantees that Sender can only obtain the minimum interim payoff no matter his type.

1The convex combination of truth-adjust welfare functions defined in Doval and Smolin [2024].
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Consequently, Sender has no incentive to deviate from truthfully reporting his type.

We notice that the above conclusion implies the tie between the MDMB and the

robust information design problems. We discover that the value of MDMB is also equal

to the maximum payoff of the cautious Sender with full commitment power2. We also

demonstrate that the value of MDMB is equal to the payoff of Sender facing the worst

subjective prior in BP with heterogeneous beliefs Alonso and Câmara [2016]. The above

discoveries suggest that the analysis of robust BP can be used to facilitate the MDMB

analysis, which justifies the research on the robust BP problem.

We further explored the MDMB that is limited by a finite budget. Theorem 2 shows

that the value of MDMB limited by budget constraint is the worst concavification value of

Sender’s generalized subjective payoff function which is the affine combination of Sender’s

adjusted payoff functions. The adjusted payoff functions further manifest Sender’s op-

timal MDMB design. The message of an optimal MDMB can be classified into two

groups. One group of messages is not associated with money burning and only func-

tions for persuasion. The other group of messages is associated with money burning and

used for obtaining credibility. The amount of money burned is designed to maximize the

credibility gained with the consideration of all the constraints.

We demonstrated that Sender has a strictly higher payoff according to MDMB rather

than according to MD for almost all cases if the value of commitment is positive. We

identify a generic condition on Receiver’s payoff functions, wherein any action that is

Receiver-optimal under certain beliefs is uniquely optimal under other beliefs with the

same support. Theorem 3 demonstrates that, for all Receiver’s payoff functions satisfying

the generic condition, the value of MDMB equals the value of MD if and only if the value of

cheap talk (CT) Crawford and Sobel [1982], Lipnowski and Ravid [2020] is also the same as

the value of MDMB. Utilizing Theorem 1 and Theorem 3, once Receiver’s payoff function

satisfies the generic condition, Proposition 7 shows that the MDMB enables a strictly

higher Sender’s payoff than MD for almost all priors unless BP, MDMB, MD, and CT

are all the same. Because the MDMB is the general model capturing the communication

process in the Web 3.0 economy when the commitment power is absent, the gap between

MDMB and BP calibrates the necessity of commitment and is referred to as the refined

value of commitment in this research. Proposition 6 shows that the refined value of

2Cautious Sender is one who maximizes his minimum payoff across types Doval and Smolin [2021]
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commitment is positive if and only if the value of commitment is positive. But, Corollary 5

also indicates that the refined value of commitment in Web 3.0 is less than the value of

commitment in the conventional economy for almost all scenarios if possible. Therefore,

the algorithms of Web 3.0 partially avoid the loss of the absence of commitment power.

1.1 Related Literature

This paper proposes a novel communication protocol where adopting the money-

burning mechanism design enhances the commitment power in a limited commitment

environment. Our work contributes to the literature that studies communication proto-

cols under various degrees of commitment power. In addition to the literature mentioned

earlier, Min [2021], Lipnowski et al. [2022], which concentrates on the case where Sender’s

commitment power has a Bernoulli distribution on full commitment and cheap talk; and

Lin and Liu [2024], which examines the situation where Sender cannot commit to the

message-generating process but he can commit to the marginal distribution of types and

messages. Bergemann and Morris [2019] integrates information design problems involv-

ing persuasion and mediation. Furthermore, our paper is closely related to studies that

analyze the effect of commitment on information design under various communication

protocols. Fréchette et al. [2022] investigates the effect of communication with different

levels of commitment power through experimental methods. Additionally, Corrao and

Dai [2023] comparatively analyzes different communication protocols at various levels of

commitment power, but they do not take money burning into account.

The main contribution of this paper is to extend the domain of mediated infor-

mation design problems. Previous research, such as Salamanca [2021], illustrates the

value of Sender’s achievements through mediated communication without burning money.

Drakopoulos et al. [2023] establish a blockchain system as a mediator, demonstrating that

designing costly messages can improve mediated information design under transparent

motives, but they do not identify the optimal Sender’s communication efficiency in gen-

eral as we do. Additionally, several studies, including Goltsman et al. [2009], Ivanov

[2014], have identified the optimal mediation plan for Receiver. Furthermore, Ivanov

[2014] compares the outcomes of mediated communication and cheap talk.

Our paper is also related to the literature on communication with transfers. Some

studies discuss cheap talk involving monetary expenditure, Austen-Smith and Banks
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[2000], Karamychev and Visser [2017], noting that Sender seldom employs a money-

burning strategy in such settings, and chooses not to burn money even in state-independent

Sender preference environments. However, in our work, money-burning mechanism plays

a key role in enhancing Sender’s commitment power and thus obtaining better communi-

cation efficiency. Kolotilin and Li [2021] investigate the application of monetary transfers

in repeated cheap talk settings, while Sadakane [2023] examines a model featuring re-

peated cheap talk games with monetary transfers from Receiver to Sender. This latter

study observes that the equilibrium set in such settings is larger than that of the original

long-term cheap talk setting. Corrao [2023] analyzes the mediation market and charac-

terizes the information and market outcomes of the revenue-maximizing mediator and

the Sender-optimal mediator. Additionally, several studies focus on Bayesian persua-

sion involving transferable utility and the cost of information, such as Li and Shi [2017],

Bergemann et al. [2018]. Dughmi et al. [2019] explore the case where Sender can enter

into contracts prior to persuasion, while Perez-Richet and Skreta [2022] investigate the

Receiver-optimal experiment under the condition that Sender can costly falsify his private

type.

Another important category of literature related to us is about mechanism design with

limited commitment. Liu and Wu [2024] examine the implementation problem in general

outcome-contingent settings, which is a more generalized context than ours. Bester and

Strausz [2001] show that the revelation principle fails to hold in a limited commitment

environment, where the principal cannot fully commit to the outcome induced by the

mechanism. Doval and Skreta [2022] provide the general revelation principle for limited

commitment mechanism design, where the joint design of information and mechanism

can be separated into two steps: first, design the information, and second, design the

mechanism based on the information.

2 Model

In Section 2.1, we develop the basic model of the Sender-Receiver game, and in Sec-

tion 2.2, we introduce the methodology for simplifying the Sender’s programming prob-

lem.
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2.1 Basic Setup

Primitives. We consider a basic game with two players: Sender (he) and Receiver

(she). Sender has the private information θ, which denotes his type and belongs to a

finite set Θ. The type θ is drawn according to a prior distribution µ0 ∈ ∆(Θ), which

is a common knowledge. Receiver can choose an action a from a finite set A, which

determines the payoffs of both players depend. Receiver’s payoff also depends on the

Sender’s type θ ∈ Θ. Sender’s value function of Receiver’s action is v(·) : A → R and the

Receiver’s value function is u(·, ·) : A × Θ → R. Both players are risk-neutral and fully

rational.

Communication with money-burning mechanisms. Before the game, Sender com-

mits a mediated communication with money-burning mechanism (or MDMB). A MDMB

consists of an input set M , an output message set S, and a corresponding mechanism

ϕ : M → ∆(S × R≥0). The MDMB prescribes how Sender designs the message and

determines the money-burning amount according to his private input. Here, we restrict

attention to the case that M , S, and the support set of ϕ are all finite.

The Sender-Receiver game. The timeline of the MDMB as an extensive-form game

is summarized as below.

Stage 1. Sender commits to the MDMB (M,S, ϕ) with a mediator.

Stage 2. The Sender’s type θ is revealed to him according to the prior distribution

µ0. And then Sender sends an input message m ∈ M to the mediator.

Stage 3. The mediator sends an output message s ∈ S to the Receiver and burns

t ≥ 0 money from the Sender’s account, with probability ϕ(s, t|m).

Stage 4. Receiver receives the money burnt by Sender and the message m, updates

her belief, and chooses an action a ∈ A.

Stage 5. The Receiver’s ex-post payoff is u(a, θ) + t and the Sender’s ex-post payoff

is v(a)− t.

Remark: In our model, money is transferred from Sender to Receiver rather than

being burnt. We argue this setting cannot influence the optimal MDMB. Receiver decides

her action after receiving the output message and money burning. Thus, the Receiver’s

action does not change the amount of money burned. Thus, whether money is burnt or
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transferred to Receiver does not influence our conclusion about the optimal MDMB. The

amount of money transferred to Receiver also does not change the optimal MDMB.

To analyze the optimal MDMB for Sender, we first apply backward induction to

examine the Perfect Bayesian equilibrium of sub-game spanning stage 2 through stage 5,

denoted as G(M,S,ϕ)(µ0).

Beliefs and strategies. The Sender’s strategy in G(M,S,ϕ)(µ0) prescribes a transition

probability σ : Θ → ∆(M). Here, σ(θ) denotes the probability distribution of input

messages from Sender to Receiver when the Sender’s type is θ. Receiver is only informed

about the output message and the subsidy amount. Hence, the output message s and the

subsidy amount t together formulate the information set of Receiver. For each information

set (s, t), the Receiver’s strategy prescribes a transition probability α : S×R≥0 → ∆(A).

Here, α(s, t) denotes the probability distribution of the actions responding to (s, t). In

each information set (s, t), Receiver must form a belief µ : S×R≥0 → ∆(Θ), where µ(s, t)

denotes the probability distribution of Sender’s types given information set (s, t). We call

the triple (σ, α, µ) an assessment.

Equilibrium. In this paper, we use Perfect Bayesian equilibrium (henceforth, PBE) as

the solution concept of game G(M,S,ϕ)(µ0). We denote the set of PBE of game G(M,S,ϕ)(µ0)

as E [G(M,S,ϕ)(µ0)]. An assessment (σ, α, µ) is a PBE if it is sequentially rational and the

belief µ satisfies Bayes’ rule where possible. Formally, an assessment (σ∗, α∗, µ∗) is a

PBE, (σ∗, α∗, µ∗) ∈ E [G(M,S,ϕ)(µ0)], if it satisfies following three conditions:

Sender’s optimality: for any θ ∈ Θ,

σ∗(θ) ∈ arg max
σ(θ)∈∆(M)

∑
m∈M,s∈S,t≥0,a∈A

σ(m|θ)ϕ(s, t|m)α∗(a|s, t)(v(a)− t). (1)

Receiver’s optimality: for any s ∈ S, t ≥ 0,

α∗(s, t) ∈ arg max
α(s,t)∈∆(a)

∑
θ∈Θ,a∈A

µ∗(θ|s, t)α(a|s, t)(u(a, θ) + t). (2)

Bayes updating: for any s ∈ S, t ≥ 0 and θ ∈ Θ,

µ∗(θ|s, t)
∑

θ′∈Θ,m∈M

µ0(θ
′)σ∗(m|θ′)ϕ(s, t|m) = µ0(θ)

∑
m∈M

σ∗(m|θ)ϕ(s, t|m). (3)
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Communication efficiency. E [G(M,S,ϕ)(µ0)] enables us to analyze the optimal MDMB

in stage 1. Given that Sender seeks to maximize his ex ante expected payoff across all

possible PBEs, we can formulate the Sender’s MDMB optimization problem as follows:

sup
M,S,ϕ

∑
θ∈Θ

µ0(θ)
∑

m∈M,s∈S,t≥0,a∈A

σ∗(m|θ)ϕ(s, t|m)α∗(a|s, t)(v(a)− t)

s.t.(σ∗, α∗, µ∗) ∈ E [G(M,S,ϕ)(µ0)].

(4)

The value of Equation 4 is referred to as the communication efficiency of MDMB, or

alternatively, the value of MDMB, denoted as V∗(µ0).

2.2 Simplifying the Problem

The optimal MDMB design problem Equation 4 is complex due to its non-convex

and equilibrium-selection complexity. However, the revelation principle developed by

Myerson [1982], Forges [1986] cannot be applied to simplify the optimal MDMB problem.

The amount of money burning can contain information about the Sender’s type. Thus,

the MDMB design will influence the Receiver’s action that Sender cannot commit to and

thus violate the condition of applying the revelation principle Bester and Strausz [2001].

In this section, we develop a new technique to simplify the MDMB. Inspired by

Doval and Skreta [2022], we apply the method of canonical mechanisms and canonical

assessments to develop a new relevant principle for MDMB. We then use the revelation

principle for MDMB and belief-based approach to convert the original complex problem

into an optimization problem under incentive-compatible and Bayes-plausible constraints.

Here, we first formally define the canonical MDMBs and canonical assessments under

which we can calculate the value of MDMB without loss of generality.

Definition 1 (Canonical MDMBs). An MDMB is canonical if M = Θ, S = ∆(Θ),

and there exists a signaling scheme π : Θ → ∆(∆(Θ)) and a deterministic function

x : ∆(Θ) → R≥0 such that π satisfies the Bayes updating condition3 and ϕ(u, x(u)|θ) =

π(u|θ) for all θ ∈ Θ and u ∈ supp{π(θ)}.

In canonical MDMBs, the input sets to a MDMB are the type sets while the output

sets are the sets of distributions of types. The output message of the canonical MDMB

3u(θ)
∑

θ′∈Θ µ0(θ
′)π(u|θ′) = µ0(θ)π(u|θ) for all u ∈ ∆(Θ).
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contains all information transmitted to the Receiver, and the subsidy to Receiver in the

canonical MDMB does not provide any extra piece of information about the Sender’s

type beyond that contained in the output message. Hence, ϕ in a canonical MDMB can

be decomposed into two parts. The first part is a signaling scheme π, and the second

part is a money-burning scheme x which is contingent on the output message. This

decomposition has a similar structure to the revelation principle in Doval and Skreta

[2022]. Henceforth, we use (π, x) to refer to a canonical MDMB.

In a canonical MDMB, the canonical assessment ensures that the Sender’s strategy is

truthful-telling and the Receiver’s posterior belief coincides with the output message.

Definition 2 (Canonical assessments). For a canonical MDMB, an assessment (σ, α, µ)

is canonical if σ(θ|θ) = 1 and µ(u, x(u)) = u for any u ∈ supp{π(θ)}.

The following proposition explains that every MDMB has a corresponding canonical

MDMB that maintains the same expected payoff of Sender. This proposition allows us

to focus only on the canonical MDMBs and the associated canonical assessment without

loss of generality as depicted in Figure 1.

Proposition 1. For any MDMB (M,S, ϕ) and (σ, α, µ) ∈ E [GM,S,ϕ(µ0)], there exists a

canonical MDMB (π, x) and a canonical assessment (σ∗, α∗, µ∗) ∈ E [G(π,x)(µ0)] such that

the expected payoffs of Sender in both assessments are the same.

Sender
θ

M S × R≥0 Receiver
ϕ(·|m)

⇔ Sender
θ

Θ ∆(Θ) R≥0

x(·)
Receiver

π(·|θ)

Figure 1: Revelation principle

In the rest of this section, we explain how to apply Proposition 1 to simplify the

optimal MDMB problem. We first define a sequence of necessary concepts related to

the belief-based approach. Then, we explain how to apply Proposition 1 and the belief

approach to 1) convert Sender’s optimality constraints to incentive-compatible constraints

and 2) convert the Bayes updating and Receiver’s optimality constraints to the Bayes

plausible constraints.

We first define the Receiver-optimal set as the set of Receiver’s best responses accord-
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ing to posterior belief µ ∈ ∆(Θ) denoted it as

RO(µ) ≜
{
α ∈ ∆(A)

∣∣supp{α} ⊂ argmax
a′∈A

∑
θ∈Θ

µ(θ)u(a′, θ)
}
.

According to Receiver’s posterior belief, we further define Sender’s belief-value correspon-

dence as V : ∆(Θ) ⇒ R, where V is the collection of all possible ex-post signaling payoffs

for Sender and expressed as

V(µ) ≜
{
q
∣∣∃α ∈ RO(µ), q =

∑
a∈A

α(a)v(a)
}
.

Furthermore, let p ∈ ∆(∆(Θ)) denote the distribution over the Receiver’s posterior belief

induced by a PBE canonical assessment. Then, we can define the Bayesian plausible set

associated with the prior µ0 according to Kamenica and Gentzkow [2011] as

BP (µ0) ≜
{
p ∈ ∆(∆(Θ))

∣∣ ∫
µ

µdp(µ) = µ0

}
.

Then, we in following proposition transform the equilibrium constraints in the equi-

librium selection problem of Equation 4 into incentive compatibility, obedience, and

Bayesian plausibility constraints.

Proposition 2. A distribution over the Receiver’s posterior belief p and the Sender’s

ex-post signaling payoff V : ∆(Θ) → R in terms of the posterior belief can be induced

by a PBE canonical assessment of a canonical MDMB if and only if p and V fulfill the

following conditions:

Incentive compatibility: for any θ, θ′ ∈ Θ,

∫
µ

(
µ(θ)

µ0(θ)
− µ(θ′)

µ0(θ′)
)(V (µ)− x(µ))dp(µ) = 0. (5)

Obedience: for any µ ∈ supp{p},

V (µ) ∈ V(µ). (6)

Bayesian Plausibility:

p ∈ BP (µ0). (7)

11



By identifying simpler PBEs that yield the same equilibrium outcome, Proposition 2

reduces the equilibrium constraints in Equation 4 to three types of constraints. Fur-

thermore, when we attempt to calculate V∗(µ0), we can further streamline the obedience

constraints.

Corollary 1. V∗(µ0) can be calculated by following optimization problem.

sup
p∈BP (µ0),x

∫
µ

(V (µ)− x(µ))dp(µ)

s.t.V (µ) = maxV(µ)∫
µ

(
µ(θ)

µ0(θ)
− µ(θ′)

µ0(θ′)
)(V (µ)− x(µ))dp(µ) = 0,∀θ, θ′ ∈ Θ.

(8)

Henceforth, unless specified otherwise, we employ V (µ) to denote maxV(µ).

3 Binary-Type Example

In this section, we employ a straightforward binary-type example to elucidate the

primary insight underlying the determination of the MDMB value and its corresponding

optimal canonical MDMB.

We consider an advertising problem between a consumer (Receiver) and a salesman

(Sender). The consumer faces a binary choice of whether to purchase a product, whose

quality is either high (θH) or low (θL). The salesman has private information about

the true quality of the product, while the consumer has a prior belief that the product

is high-quality with probability 0 < µ0 < 1
2
. We assume that the market price of the

product is fixed at 5. The consumer’s payoff depends on the quality of the product: if

she purchases a high-quality product, she receives a feedback of 10; if she purchases a

low-quality product, she receives a feedback of 0. The salesman’s payoff is determined by

the consumer’s decision: he receives a payoff of 1 from the producer as his commission

for selling the product and receives nothing otherwise.

Hiring a salesman to promote the producer’s product is a prevalent practice in online

platforms. For instance, in Tiktok, consumers may encounter some advertisements where

a vlogger conducts a trial for a certain product to demonstrate its quality. However,

consumers don’t know whether the product they purchase will have the same quality

as the one in the trial. Sometimes, at the end of the vlog, there is a coupon for the
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audience. In the process of communication between salesman and consumers, consumers

can only verify the message-generating process, i.e. observe the whole trial process, but

the salesman can still alter the input, i.e. the quality of the product that the consumer

buys may differ from the quality of the product in the trial. Hence, we regard the trial

and coupon joint design as a kind of MDMB design of the salesman.

In this example, we define the Sender’s interim signaling payoff of type θ as

Vπ(θ) ≜
∑

µ∈supp{π(θ)}

π(µ|θ)V (µ),

or equivalently, suppose π induce distribution of Receiver’s posteriors p, Vp(θ) ≜
∫
µ

µ(θ)
µ0(θ)

V (µ)dp(µ).

Suppose two types θ, θ′ of Sender have different interim payoffs, i.e., Vπ(θ) ̸= Vπ(θ
′). Then,

the type of Sender with the lower interim payoff has an incentive to deviate and input

the other type. This deviation undermines the trust between Sender and Receiver and

results in a loss of benefits from information disclosure of Sender. One way to mitigate

this problem is to use burning money, which is a voluntary sacrifice of some benefits by

Sender to gain more credibility and can be easily verified by Receiver.

In order to obtain the value of MDMB, we conduct a two-step analysis. The first step

is to identify the upper bound of the salesman’s expected payoff. The second step is to

construct a sequence of MDMBs such that the salesman’s payoff in an equilibrium under

these mechanisms approaches the upper bound.

The upper bound. We begin by deriving the upper bound of the value of MDMB.

Consider a mechanism (π, x) that satisfies the incentive-compatible constraint. In this

mechanism, the salesman’s payoff is Vπ(θ
H)−

∑
µ∈supp{π(θH)} π(µ|θH)x(µ), which is equal

to Vπ(θ
L)−

∑
µ∈supp{π(θL)} π(µ|θL)x(µ). Since x(µ) ≥ 0, it follows that

V∗(µ0) ≤ max
π

{min{Vπ(θ
H), Vπ(θ

L)}} ≤ min{max
π

Vπ(θ
H),max

π
Vπ(θ

L)}.

According to the method of Kamenica and Gentzkow [2011], we can geometrically

characterize maxπ Vπ(θ). To this end, we define type θ’s share of ex-post payoff V (µ)

given the posterior belief µ as

V̂θ(µ) ≜
µ(θ)

µ0(θ)
V (µ),
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which implies that each type in the support of µ receives a share µ(θ)
µ0(θ)

of the ex-post

payoff V (µ) given the posterior belief µ. If we denote the concave envelope of func-

tion f by cav(f), we can succinctly write that maxπ Vπ(θ) = cav(V̂θ)(µ0). The geomet-

ric illustrations of maxπ Vπ(θ
H),maxπ Vπ(θ

L) are given in Figure 2. Hence, we obtain

V∗(µ0) ≤ cav(V̂θL)(µ0) =
µ0

1−µ0
.

µ

V

0 10.5µ0

11

µ0

1−µ0

V̂θH (µ)

V̂θL(µ)

Figure 2: V̂θH (µ) and V̂θL(µ).

µ0

V∗

0 10.5

1

Figure 3: V∗(µ).

Construction of MDMB. We construct a canonical MDMB that attains the upper

bound. The signaling scheme depicted in Figure 2 is characterized by M = {1
2
, 0} and

π(1
2
|θH) = 1, π(1

2
|θL) = µ0

1−µ0
, π(0|θL) = 1−2µ0

1−µ0
. Subsequently, we introduce a money

burning message “1”. For any δ > 0, the modified signaling scheme is defined as M∗ =

{1, 1
2
, 0}, π∗(1

2
|θH) = 1 − δ, π∗(1|θH) = δ and π∗(1

2
|θL) = (1 − δ)π(1

2
|θL), π∗(0|θL) =

1 − π∗(1
2
|θL). The associated money-burning scheme is x(1) = 1−(2−δ)µ0

δ(1−µ0)
, x(1

2
) = t(0) =

0.This MDMB remains canonical and incentive-compatible for any δ > 0. The salesman’s

expected payoff is µ0

1−µ0
(1− δ). As δ → 0+, the salesman’s payoff converges to the upper

bound of the value of MDMB. We can illustrate the value of MDMB V∗(µ0) for different

priors µ0 in Figure 3.

The characterization of the value of MDMB for binary type space extends beyond

this example. We articulate the general findings of binary type space in the subsequent

proposition.

Proposition 3. Suppose Sender has a binary type set Θ = {θ1, θ2}. Then, for any prior

distribution µ0 ∈ ∆(Θ), we have V∗(µ0) = min{cav(V̂θ1)(µ0), cav(V̂θ2)(µ0)}.

Proof. This proof is relegated to Appendix B.

14



4 General Results

This section expands the analysis of the binary case to encompass a finite type space.

The foundational concept mirrors the illustration provided in Section 3. We delineate

the MDMB value in Section 4.1 and discuss two pertinent implications concerning its

correlation with existing literature. Furthermore, we delineate the optimal MDMB in

Section 4.2. Analogous to Section 3, our optimal MDMBmay entail the burning of infinite

funds at a specific message with negligible probability. In Section 4.3, we delineate the

optimal mechanism when Sender operates within a constrained budget for money burning.

4.1 The Value of MDMB

Given a canonical MDMB (π, x), we define the interim signaling payoff of type θ

under signaling scheme π as follows,

Vπ(θ) ≜
∑

µ∈supp{π(θ)}

π(µ|θ)V (µ). (9)

Moreover, we define the type θ’s share of ex-post payoff V (µ) given the posterior µ as

V̂θ(µ) = µ(θ)
µ0(θ)

V (µ).4 Based on this adjusted ex-post payoff, we introduce the Sender’s

subjective payoff function under the posterior µ and the subjective prior λ ∈ ∆(Θ) as

V̂λ(µ) ≜ Eθ∼λ{V̂θ(µ)} =
∑
θ∈Θ

λ(θ)
µ(θ)

µ0(θ)
V (µ).5 (10)

We denote the concave envelope of function f by cav(f). Now, we can derive the

value of MDMB.

Theorem 1. V∗(µ0) = maxπ minθ∈Θ Vπ(θ) = minλ∈∆(Θ) cav(V̂λ)(µ0).

Proof. This proof is relegated to Appendix B.

We have elucidated the underlying intuition of the proof of Theorem 1 in Section 3.

Formally, our proof of Theorem 1 is structured into three distinct components. Ini-

tially, we leverage the non-negativity of money burning to establish the upper bound

4This follows from the fact that Eθ∼µ0{V̂θ(µ)} = V (µ). The notation V̂θ is also known as truth-adjust
welfare function introduced by Doval and Smolin [2024].

5Note that when λ = µ0 the subjective payoff function under the posterior µ becomes V (µ).
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for V∗(µ0). Subsequently, for any signaling scheme π, we present a construction of the

MDMB, encapsulated in Proposition 8, demonstrating that Sender can secure at least

the minimum interim signaling payoff associated with π. Ultimately, the min-max and

max-min equality is demonstrated through the application of Sion’s minimax theorem.

µ

V

0 10.5µ0

11

µ0

1−µ0

V̂θH (µ)

V̂θL(µ)

V̂λ(µ)

Figure 4: The geometric interpretation.

According to Theorem 1, we can geometrically characterize the value of MDMB and

explain how the money burning mechanism reshapes the value function. As depicted in

Figure 4, Theorem 1 characterizes the value of the MDMB for the example in Section 3.

We first plot the ex-post payoff shares of type θH and type θL, denoted by V̂θH (µ) and

V̂θL(µ), respectively, which are both exogenously given. Then we compute V̂λ, which is

the convex combination or the expected value of V̂θH and V̂θL under λ. The value of the

MDMB is the minimum of cav(V̂λ)(µ0) over all possible λ, as shown by the blue line in

Figure 4. Therefore, the money burning mechanism transforms the belief-payoff function

from V (µ) to V̂θL(µ) in this example.

In addition to the geometric property of V∗(µ0), Theorem 1 also yields two important

implications, linking the value of MDMB to two varieties of robust Bayesian persuasion

problems, which provide a theoretical justification for robust BP.

The first equation of Theorem 1 indicates that the value of MDMB is the same as

the value of Sender who has full commitment power and opts for a signaling scheme that

maximize his minimum interim payoff. The model of Sender opting for such a signaling

scheme is named cautious Bayesian persuasion in which Sender only focuses on his lowest

possible welfare, Doval and Smolin [2021, 2024]. In cautious Bayesian persuasion setting,

Sender has full commitment power but acts robustly to the type realization. The following

corollary constitutes our first implication of Theorem 1.
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Corollary 2. The value of MDMB equals the payoff of a Sender with full commitment

power but who is cautious.

The second equation of Theorem 1 relates the value of MDMB to the Sender’s payoff

in robust Bayesian persuasion with heterogeneous beliefs. To elucidate this, we call a

subjective distribution λ ∈ ∆(Θ) as the worst Sender’s subjective prior if it minimizes

cav(V̂λ)(µ0) which we refer to as the worst Sender’s subjective expected payoff. Based

on the model introduced by Alonso and Câmara [2016] in which the Sender’s and the

Receiver’s subjective priors are heterogeneous, the second equation of Theorem 1 shows

that the value of the MDMB coincides with the worst Sender’s subjective expected payoff

in heterogeneous belief Bayesian persuasion. Hence, the following corollary is our second

implication of Theorem 1.

Corollary 3. The value of MDMB V∗(µ0) equals to the payoff of Sender under Bayesian

persuasion with heterogeneous priors, in which Sender holds the worst subjective prior

and Receiver has prior µ0.

Proposition 3 implies that in the context of a binary type space, the worst subjective

prior is attained at the extreme point of ∆(Θ). However, we will provide an example at

the end of Section 4.2 to demonstrate that this result does not hold in general.

4.2 The Optimal MDMB

According to Theorem 1, the key of constructing the optimal MDMB lies in deter-

mining a signaling scheme that maximizes the minimum interim signaling payoff, which

we refer to as the optimal signaling scheme. Once we have this optimal signaling scheme,

we can apply Proposition 8 to construct the optimal MDMB. Therefore, in this sec-

tion, our calculate the optimal signaling scheme according to the min-max and max-min

equivalence.

We first explain the intuition for the optimal signaling scheme design. We notice that

the min-mas and max-min equality can be modeled as the Nash equilibrium of a zero-sum

game between Sender and Nature. Sender designs the signaling scheme p ∈ BP (µ0) while

Nature sets Sender’s subjective prior λ ∈ ∆(Θ). Sender aims to maximize the following
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payoff function in the zero-sum game while Nash pursues to minimize it.

L(λ, p) ≜
∫
µ

V̂λ(µ)dp(µ). (11)

The following proposition provides the indifferent condition for Nature’s optimal strategy

at the Nash equilibrium in the zero-sum game.

Proposition 4. A subjective prior λ∗ ∈ ∆(Θ) is the worst Sender’s subjective prior if

and only if there exists p∗ ∈ BP (µ0) such that L(λ∗, p∗) = cav(V̂λ∗)(µ0), and for any

θ ∈ supp(λ∗), L(λ∗, p∗) = L(µθ, p
∗), and for any θ ̸∈ supp(λ∗), L(λ∗, p∗) ≤ L(µθ, p

∗).6

We also get the condition for Sender’s optimal strategy at the Nash equilibrium and

explain it in the following proposition.

Proposition 5. A signaling scheme p∗ ∈ BP (µ0) is optimal if and only if there exists

λ∗ ∈ ∆(Θ) such that L(λ∗, p∗) = cav(V̂λ∗)(µ0), and for any θ ∈ supp(λ∗), L(λ∗, p∗) =

L(µθ, p
∗), and for any θ ̸∈ supp(λ∗), L(λ∗, p∗) ≤ L(µθ, p

∗).

Proof. Those proofs are relegated to Appendix B.

These two propositions jointly characterize the worst subjective prior and the optimal

signaling scheme. The condition, “L(λ∗, p∗) = cav(V̂λ∗)(µ0), and for any θ ∈ supp(λ∗),

L(λ∗, p∗) = L(µθ, p
∗), and for any θ ̸∈ supp(λ∗), L(λ∗, p∗) ≤ L(µθ, p

∗)”, implies that λ∗

and p∗ form a Nash equilibrium in the “zero-sum game”, where λ∗ is the best response to

p∗ and vice versa. We apply them to characterize the signaling scheme for general cases

in the following example. This example also shows that the worst subjective prior is not

necessarily an extreme point of ∆(Θ) as in binary-type cases.

Example 1. We consider an example with three parties: a seller, a buyer, and an in-

fluencer. The seller wants to sell a zero-cost product to the buyer. The buyer’s valuation

of the product is v. The seller only knows that v is distributed uniformly in {1, 2, 3}.

The buyer is a fan of the influencer, who wants to help the buyer reduce the price of

the product by disclosing information about the buyer’s type and subsidizing the seller.

The influencer acts as Sender who uses our MDMB to influence the seller’s action as

Receiver. To fit our model, we let the type set be Θ = {v1 = 1, v2 = 2, v3 = 3}, the prior

distribution be µ0 = (1
3
, 1
3
, 1
3
), and the seller’s action set be A = {p1 = 1, p2 = 2, p3 = 3}.

6µθ is the distribution in ∆(Θ) with a singleton support {θ}.
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We assume that the influencer’s objective is to minimize the price of the product. If the

seller charges a price pi to the buyer, the influencer’s valuation function is v(pi) = 4−pi.

We use Theorem 1 to examine the extreme point subjective priors of ∆(Θ) at first. We

then use Proposition 4 to find the worst Sender’s subjective prior and the corresponding

maximum payoff of the influencer achieved by the MDMB. We also derive the optimal

MDMB backward.

We consider three extreme point subjective priors λi ∈ ∆(Θ), i = 1, 2, 3, where

λ1 = (1, 0, 0), λ2 = (0, 1, 0), λ3 = (0, 0, 1). For any λ ∈ ∆(Θ), to find the concavifi-

cation value of V̂λ(µ) at µ0, we can assume without loss of generality that we only need

to find the distribution of posterior τ ∈ BP (µ0) that induces different actions of the

Receiver.7 Then finding cav(V̂λ)(µ0) becomes a linear programming problem. We obtain

that cav(V̂λ1)(µ0) = 3, where {(1, 0, 0), (0, 1, 0), (0, 0, 1)} forms the support of Receiver’s

posterior distribution and they are realized with equal probability; cav(V̂λ2)(µ0) = 3,

where (1
2
, 1
2
, 0), (0, 0, 1) forms the support of Receiver’s posterior distribution and they

are realized with probability 2
3
, 1
3
respectively; and cav(V̂λ3)(µ0) =

8
3
. So we can conclude

that in this example V∗(µ0) ≤ 8
3
.

However, λ3 is not the worst subjective prior in this case, even though it minimizes

cav(V̂λ)(µ0) among the extreme points of ∆(Θ). Next we show that λ∗ = (0, 1
2
, 1
2
) is the

worst subjective prior by Proposition 4. We first calculate that cav(V̂λ∗) = 5
2
and the

process of concavification splits µ0 into (
1
2
, 1
4
, 1
4
), (0, 1

2
, 1
2
) with probability 2

3
, 1
3
respectively.

We denote this distribution over posterior as τ ∗. We verify that L(λ2, τ
∗) = L(λ3, τ

∗) =

5
2
< 3 = L(λ1, τ

∗). So by Proposition 4, λ∗ is the worst subjective prior and by Theorem 1

we have V∗(µ0) =
5
2
. Moreover, by Proposition 5, we know that τ ∗ is the optimal signaling

scheme. We can use Proposition 8 to construct the optimal MDMB that approaches

V∗(µ0).

4.3 Bounded Credit for Money Burning

This section addresses the scenario where the Sender’s money burning is limited by a

budget constraint C. Formally, the MDMB with a budget constraint C for money burning

is characterized by an input setM , an output set S, and a mapping ϕ : M → ∆(S×[0, C]).

7This is true because if two posteriors µ1, µ2 in the support of τ lead to the same action of the

Receiver, we can merge them as posterior τ(µ1)
τ(µ1)+τ(µ2)

µ1 +
τ(µ2)

τ(µ1)+τ(µ2)
µ2 with probability τ(µ1) + τ(µ2).
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The Sender-Receiver game remains identical to that explained in Section 2.1. For any

given value of C, we use V∗
C(µ0) to denote the value of MDMB with a budget constraint

C for money burning.

To analyze the optimal MDMB with budget constraint, we define a new concept of

Sender’s generalized ex-post subjective payoff function for a posterior µ ∈ ∆(Θ), denoted

by V̂λ,C(µ), as follow

V̂λ,C(µ) ≜ max{
∑
θ∈Θ

λ(θ)
µ(θ)

µ0(θ)
maxV(µ),

∑
θ∈Θ

λ(θ)
µ(θ)

µ0(θ)
(minV(µ)− C)}. (12)

Here, λ : Θ → R is the Lagragian multiplier of incentive-compatible constraints and

satisfies
∑

θ λ(θ) = 1. Thus, V̂λ,C(µ) is an affine combination of the adjusted share

of Sender’s ex-post payoff similar to Equation 10. Then, we use V̂λ,C(µ) to define the

generalized ex-ante subjective expected payoff function associated with the signal scheme

p ∈ BP (µ0) as below.

LC(λ, p) ≜
∫
µ

V̂λ,C(µ)dp(µ). (13)

Then, we have the following theorem characterizing the value of MDMB with budget

constraints.

Theorem 2.

V∗
C(µ0) = max

p∈BP (µ0)
min∑
θ λ(θ)=1

LC(λ, p) = min∑
θ λ(θ)=1

max
p∈BP (µ0)

LC(λ, p).

Moreover, V∗
C(µ0) = min∑

θ λ(θ)=1 cav(V̂λ,C)(µ0).

To establish Theorem 2, we initially generalize the revelation principle (Proposition 1)

to demonstrate that computing V∗
C(µ0) in the bounded credit environment necessitates

the incorporation of an additional constraint, x(µ) ≤ C for all µ, into the Sender’s

optimization problem (Equation 8). Subsequently, we employ a two-step optimization

approach, commencing with the determination of a money burning scheme that max-

imizes the Sender’s payoff for any given signaling scheme. This process facilitates the

identification of the optimal choice of obedience constraints from the Sender’s perspec-

tive. This stage culminates in a max-min characterization. The subsequent step involves

maximizing the Sender’s payoff across signaling schemes, which is achieved through the

application of Sion’s minimax theorem.
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The structure of V̂λ,C shows that the messages transmitted by Sender consist of two

components: the first component corresponds to the case where
∑

θ λ
∗(θ) µ(θ)

µ0(θ)
≥ 0, in

which Sender employs a costless message for the purpose of persuasion; the second com-

ponent corresponds to the case where
∑

θ λ
∗(θ) µ(θ)

µ0(θ)
< 0, in which Sender employs a costly

message for establishing commitment. Consequently, a conceptualization of one possible

optimal MDMB (with bounded credit or not) involves the allocation of messages for two

fundamental objectives, persuasion and commitment. This rationale can be leveraged

to formulate the optimal MDMB. When the message serves the purpose of persuasion,

Sender desires Receiver to take the best response that favors him; when the message

serves the purpose of commitment, Sender desires Receiver to take the best response

that disfavors him and burns C money at this message. Hence, this theorem reveals

an intriguing insight. When Sender has bounded budget for money burning, Receiver

can enhance the Sender’s payoff by adopting a suitable best response that deliberately

chooses the best response that either favors or disfavors Sender at different posteriors.

At the end of this section, we apply Theorem 2 to compare the MDMBs with different

bounded credit for money burning, Bayesian persuasion Kamenica and Gentzkow [2011],

mediated communication Salamanca [2021], and cheap talk Lipnowski and Ravid [2020]

in the illustrative example in Section 3.

We begin by characterizing V∗
C(µ0). By Theorem 2, we need to consider four lines

for a given parameter λ ∈ R, namely l1(µ) = 0, l2(µ) = −C(λµ
µ0

+ (1−λ)(1−µ)
1−µ0

), l3(µ) =

λµ
µ0

+ (1−λ)(1−µ)
1−µ0

and l4(µ) = (1 − C)(λµ
µ0

+ (1−λ)(1−µ)
1−µ0

). Correspondingly, we have that for

µ ∈ [0, 1],

V̂λ,C(µ) =


max{l1(µ), l2(µ)} µ < 1

2

max{l2(µ), l3(µ)} µ = 1
2

max{l3(µ), l4(µ)} µ > 1
2

.

Since V̂λ,C is convex and upper semi-continuous on µ ∈ [0, 1
2
) and µ ∈ (1

2
, 1], to com-

pute cav(V̂λ,C)(µ0) we only need to evaluate V̂λ,C(0) = max{0,−C 1−λ
1−µ0

}, V̂λ,C(
1
2
) =

max{−C
2
( λ
µ0

+ 1−λ
1−µ0

), 1
2
( λ
µ0

+ 1−λ
1−µ0

)} and V̂λ,C(1) = max{ λ
µ0
, (1−C) λ

µ0
}. Assuming µ0 <

1
2
,

we can only partition µ0 into 0, 1
2
or 0, 1. Since V̂λ,C(0), V̂λ,C(

1
2
), V̂λ,C(1) are all decreasing

in λ for λ ≥ 0, to find the minimum concavification value, we only need to consider

the case of λ ≤ 0. We then divide this case into two subcases: λ ∈ [− µ0

1−2µ0
, 0] and
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λ ∈ (−∞,− µ0

1−2µ0
). We can solve for the result and obtain that for µ0 <

1
2
,

V∗
C(µ0) =

 0 C ≤ 1

(C−1)µ0

C(1−µ0)−µ0
C > 1

.

For µ0 ≥ 1
2
, V∗

C(µ0) = 1.

If we apply different communication protocols to this example, we can obtain the

optimal payoff corresponding to the prior µ0, which is shown in Figure 5. The red line is

the concave envelope of maxV(µ), which is the result of Bayesian persuasion. The black

line is the result of the MDMB with bound C = +∞, i.e. V∗(µ0). The blue line is the

result of V∗
2 (µ0). Finally, we can see that regardless of what we use among the MDMB

with bounded credit C ≤ 1, cheap talk or classical mediated communication, we can only

get the results as the green line, which cannot benefit from those protocols. More results

about the comparison can be found in Section 5.1.

µ0

V

0 10.5

1

Figure 5: This figure compares the optimal payoffs of different protocols. The red line
represents the payoff achieved by Bayesian persuasion. The black line shows V∗(µ0). The
blue line indicates V∗

2 (µ0). The green line corresponds to V∗
C(µ0) for C ≤ 1, cheap talk,

or classical mediated communication.

5 Applications

This section covers two important applications emanating from the findings of this

paper. In Section 5.1, we discuss the refined value of commitment in the Web 3.0 com-

munity by MDMB. In Section 5.2, we discuss the improved value of mediator by the

money-burning tactic.

In the previous section, we illustrated an example to compare our MDMB with
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different communication protocols, namely cheap talk, mediated communication, and

Bayesian persuasion. In this section, we will conduct a general comparison of our

communication protocol with the three other communication protocols. Let V∗
CT (µ0),

V∗
0 (µ0), and V∗

BP (µ0) denote the optimal payoff of Sender under cheap talk, media-

tor without burning money, and Bayesian persuasion, respectively. According to Ka-

menica and Gentzkow [2011] and Lipnowski and Ravid [2020], V∗
BP (µ0) = cav(V)(µ0)

and V∗
CT (µ0) = qcav(V)(µ0) where qcav denote the quasi-concave envelope. The discrep-

ancy V∗
BP (µ0) − V∗

CT (µ0) is recognized as the value of commitment. Between these two

values, we have the following fact.

Fact 1. V∗
CT (µ0) ≤ V∗

0 (µ0) ≤ V∗(µ0) ≤ V∗
BP (µ0).

5.1 The Refined Value of Commitment

In conventional societies, the paradigm of communication without commitment is

epitomized by the cheap talk model. Consequently, V∗
BP (µ0) − V∗

CT (µ0) quantifies the

value of commitment inherent in communication within conventional societies. However,

as delineated in Drakopoulos et al. [2023], the paradigm of communication in Web 3.0

communities, facilitated by Blockchain systems and smart contracts, presents a radically

altered landscape. In Web 3.0 communities, users are characterized by full decentraliza-

tion and a potential for high unreliability. Consequently, a viable approach to facilitating

communication among these users is through the deployment of smart contracts, which

serve as transparent algorithms. Sender leverage smart contracts to integrate money-

burning mechanisms via subsidies and gas fees. Therefore, the communication milieu of

Web 3.0 communities is not amenable to modeling as cheap talk but rather as MDMB.

Hence, we denote VBP (µ0)−V∗(µ0) as the refined value of commitment in Web 3.0 com-

munities.

Our first result establishes the condition under which the refined value of commitment

does not exist.

Proposition 6. If V∗(µ0) = V∗
BP (µ0) then V∗

CT (µ0) = V∗
0 (µ0) = V∗(µ0) = V∗

BP (µ0).

Proof. This proof is relegated to Appendix B.

Intuitively, we can derive this proposition from the result of Corrao and Dai [2023].

When V∗(µ0) = V∗
BP (µ0), there is no money burning. Hence, V∗

0 (µ0) = V∗
BP (µ0), which
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leads to V∗
CT (µ0) = V∗

BP (µ0) by Corrao and Dai [2023]. By Proposition 6, we deduce that

if V∗
CT (µ0) < V∗

BP (µ0), then V∗(µ0) < V∗
BP (µ0). Consequently, we promptly arrive at the

subsequent corollary, which juxtaposes the value of commitment with the refined value

of commitment.

Corollary 4. There is a positive value of commitment, i.e. V∗
CT (µ0) < V∗

BP (µ0), if and

only if there is a positive refined value of commitment in the Web 3.0 community, i.e.

V∗(µ0) < V∗
BP (µ0).

Corollary 4 has an important implication that if there is the value of commitment in

conventional societies, commitment is still valuable in Web 3.0 communities. In addition,

according to Corollary 2 in Lipnowski and Ravid [2020], the refined value of commitment

is strictly positive under almost all prior beliefs as long as the value of commitment

is strictly positive. Furthermore, building on Corollary 2 and Corollary 3, we obtain

two characterizations of the refined value of commitment. Corollary 2 indicates that the

refined value of commitment is given by the difference between BP and cautious BP. This

difference can be assessed by comparing the expected payoff of the Sender and the lowest

interim payoff of the Sender under full commitment. Corollary 3 implies that the refined

value of commitment is also given by the difference between BP and heterogeneous BP

under the Sender’s worst subjective prior. This difference can be evaluated by considering

the Receiver’s prior µ0 and the Sender’s worst subjective prior λ∗.

Although the existence of the refined value of commitment is contingent upon the

presence of the value of commitment, in the subsequent section, we demonstrate that the

refined value of commitment within the Web 3.0 community is reduced in comparison to

the value of commitment.

5.2 The Improved Value of Mediator

The distinguishing feature of our model vis-à-vis classical mediated communication

lies in the incorporation of the money-burning component. Consequently, the outcome

of the trade-off between the adoption of money-burning and the attainment of commit-

ment is encapsulated within what we term the improved value of mediator through the

money-burning tactic, denoted as V∗(µ0)−V∗
0 (µ0). In this section, by characterizing the

improved value of mediator, we will contrast the efficacy of MDMB with that of CT and
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MD. Because the presence of a positive improved value of mediator suggests that the com-

mitment value is diminished in Web 3.0 communities in contrast to traditional societies,

thereby providing a more profound understanding of the refined value of commitment.

Initially, we elucidate a topological generic property of the Receiver’s payoff function

set. When the Receiver’s payoff function exhibits this generic property, our communica-

tion protocol can improve the Sender’s payoff under almost all Receiver’s beliefs.

Definition 3. Recalling the definition of the Receiver’s best response set under the belief

µ, RO(µ), we call the setting of A, u and Θ generic if, for any belief µ and any a ∈ RO(µ),

there exists µ′ such that supp{µ′} = supp{µ} and RO(µ′) = {a}.

This condition is also present in Lipnowski et al. [2024], where the authors employ

it as a generic sufficient criterion for the uniqueness of the Sender’s payoff under perfect

Bayesian equilibrium in the Bayesian persuasion game. We have an intuitive way to un-

derstand the definition of generic is as follows. We define the degenerate setting Θ′, A, u

that is obtained by restricting the beliefs to a subset of types Θ′. Then, the generic condi-

tion for A, u,Θ is equivalent to the condition that satisfies that for any degenerate setting

Θ′, A, u, if we eliminates all strictly dominated actions from A, there will be no weakly

dominated actions left in the remaining action set. Therefore, from this perspective, the

condition of Definition 3 is unequivocally generic.

Theorem 3. Under generic settings, if V∗(µ0) = V∗
0 (µ0) then V∗

CT (µ0) = V∗
0 (µ0) =

V∗(µ0).

Proof. This proof is relegated to Appendix B.

The proof of this theorem is notably more intricate than the proposition outlined

in the preceding section. We establish that in generic circumstances, the continuity of

V∗(µ0) is manifested, which is a pivotal attribute for the derivation of Theorem 3 (cf.

Proposition 9 in Appendix B).

Technically, we provide two illustrative examples in Appendix A. Example 2 shows

that the relation V∗
CT (µ0) = V∗

0 (µ0) = V∗(µ0) < V∗
BP (µ0) can hold even under generic

settings, which refers to the case that the refined value of commitment is positive and

the same as the value of commitment. Example 3 shows that when the generic condition

is not satisfied, it is possible that V∗
CT (µ0) < V∗

0 (µ0) = V∗(µ0), which demonstrates the

necessity of generic settings of Theorem 3.
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According to Theorem 3, it is ascertained that within generic settings, the absence of

an improved value of mediator necessitates the equivalence between the refined value of

commitment and the value of commitment, implying that in Web 3.0 communities, the

refined commitment value remains unaltered. Although this outcome might be perceived

as unfavorable, we demonstrate that such a scenario is improbable. By Theorem 3, we

observe that if V∗(µ0) > V∗
CT (µ0), there must be a positive improved value of mediator.

Hence, based on this observation, we elucidate a sufficient condition under which the

implementation of a money-burning mechanism can enhance the efficacy of mediated

information design.

Proposition 7. Under generic settings, if qcav(V)(µ0) ̸= cav(V)(µ0) and there is a

sufficiently small ε > 0 such that qcav(V)(µ0+ε(µ−µ0)) = qcav(V)(µ0) for all µ ∈ ∆(Θ),

it follows that V∗
0 (µ0) < V∗(µ0).

Proof. This proof is relegated to Appendix B.

We can use Proposition 7 to identify when there is a positive improved value of

mediator. The condition qcav(V)(µ0) ̸= cav(V)(µ0) rules out the possibility that CT

achieves the same communication efficiency as BP. The condition that there exists a

sufficiently small ε > 0 such that qcav(V)(µ0+ε(µ−µ0)) = qcav(V)(µ0) for all µ ∈ ∆(Θ)

implies that µ0 is either an interior point of the quasi-concavification distribution of the

posterior of V(µ) at point µ0.

Remark that, under the assumption that A is a finite set, maxV(µ) is a piecewise

constant function, and thus qcav(V)(µ) is also a piecewise constant function with finite

values. Hence, following a similar argument as Corollary 2 in Lipnowski and Ravid

[2020], we can deduce that almost all beliefs µ0 are either interior points of some quasi-

concavification distribution of posteriors or V∗
CT (µ0) = V∗

BP (µ0) = maxµ∈∆(Θ) V (µ). By

Proposition 7, for the former µ0, we have that V∗
CT (µ0) ≤ V∗

0 (µ0) < V∗(µ0). Consequently,

we have a subsequent implication.

Corollary 5. Under generic settings, for almost all prior beliefs µ0, either there is no

value of commitment or there is a positive improved value of mediator.
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6 Conclusion

In this paper, we introduce and investigate a novel communication protocol called me-

diated communication with money-burning mechanism (MDMB). In our communication

protocol, Sender not only employs a trusted mediator to convey the message but also vol-

untarily gives up some benefits as compensation for Receiver to gain more commitment

power. By generalizing the revelation principle of mechanism design with limited com-

mitment, we characterize the communication efficiency of our communication protocol

under the transparent motives assumption. We demonstrate that the value of MDMB

aligns with that of Cautious Bayesian persuasion, which is equivalent to the concavifica-

tion value under the worst Sender’s subject prior. Moreover, we extend our analyses to

scenarios where Sender possesses bounded credits for money-burning.

Our paper has two important applications. The first application pertains to the

characterization of the refined value of commitment within Web 3.0 communities. We

elucidate that the presence of the refined value of commitment is synonymous with the

existence of the traditional value of commitment. Moreover, our result indicates that

in the trade-off between money burning and enhancing commitment power, Sender can

benefit from burning money in almost all generic non-trivial cases. This also establishes

a new benchmark for the unreliable Sender’s communication efficiency. It also implies

that for almost all prior beliefs under the generic property, there is either no value of

commitment at all or a positive improved value of mediator by money-burning tactic,

indicating that in Web 3.0 community the refined value of commitment is strictly reduced

compared to the value of commitment.

It is imperative to acknowledge that our conclusions are contingent upon the signifi-

cant assumption of state-independent preferences of Sender. In a more general framework,

the ramifications of money-burning warrant further in-depth exploration.
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A Omitted Examples

Example 2. Receiver has three possible actions a1, a2, a3 and Sender has two possible

types H,L. The prior belief assigns probability µ0 to the Sender’s type being H. The

Sender’s values for the actions are v(a1) = 0, v(a2) =
1
4
, v(a3) = 1. We summarize the

Receiver’s payoffs in Table 1.

u(a, θ) H L
a1 -4 1
a2 0 0
a3 1 -2

Table 1: Receiver’s payoff matrix.
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In this example, the belief-value correspondence is

V(µ) =



1 µ ∈ (2
3
, 1]

[1
4
, 1] µ = 2

3

1
4

µ ∈ (1
5
, 2
3
)

[0, 1
4
] µ = 1/5

0 µ < 1
5

.

µ0

V

0 12
3

1

1
5

Figure 6: Results of Example 2.

We depict V(µ) on Figure 6 as the black line, which corresponds to the outcome under

a mediator without money burning and cheap talk, following the results of Salamanca

[2021]. Based on Proposition 3, we display the result of V∗ on Figure 6 as the blue line

and V∗
BP as the red line, with the procedure omitted. We observe that, when µ0 =

1
5
, the

case of V∗
CT (µ0) = V∗

0 (µ0) = V∗(µ0) < V∗
BP (µ0) arises under the generic setting.

Example 3. We present an abstract setting in this example, where we only specify the

belief-value function and ensure the existence of the basic settings of A, u, v,Θ by imposing

the upper-semi continuity of the belief-value function.

We assume that there are three distinct types θ1, θ2 and θ3. The maximum of belief-

value correspondence is

V (µ) =



7
3

µ(θ1) = 1

2 µ(θ1) = 0, µ(θ2) ∈ [0, 1
2
)

3 µ(θ1) = 0, µ(θ2) ∈ [1
2
, 3
4
]

1 µ(θ1) = 0, µ(θ2) ∈ (3
4
, 1]

0 otherwise

.
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By restricting the support to {θ2, θ3}, the value function of Example 3 coincides with

Example 3 or Figure 7 in Salamanca [2021]. For µ0 = (1
2
, 1
6
, 1
3
), since V∗

0 ((0,
1
3
, 2
3
)) = 7

3

as shown by Salamanca [2021], splitting µ0 into (1, 0, 0) and (0, 1
4
, 3
4
) yields V∗

0 (µ0) =
7
3
.

Furthermore, the interim payoff of θ1 cannot exceed
7
3
, implying that V∗(µ0) ≤ 7

3
. Hence,

we obtain V∗(µ0) = V∗
0 (µ0) =

7
3
. However, to find a cheap talk equilibrium with 7

3
as the

Sender’s payoff, we need to split µ0 into (1, 0, 0) and (0, 1
3
, 2
3
) and keep (1, 0, 0) unchanged.

Since V∗
CT ((0,

1
3
, 2
3
)) = 2 < 7

3
= V ((1, 0, 0)), no cheap talk equilibrium achieves 7

3
for the

Sender, and thus V∗
CT (µ0) < V∗

0 (µ0) = V∗(µ0) for µ0 = (1
2
, 1
6
, 1
3
).

B Omitted Proofs

Appendix B collects all the proofs from the main body of this paper.

Proof of Proposition 1. For any MDMB (M,S, ϕ) and a corresponding PBE assessment

(σ, α, µ) ∈ E [GM,S,ϕ(µ0)], we will directly construct a canonical MDMB (π, x) and a cor-

responding PBE canonical assessment (σ∗, α∗, µ∗) ∈ E [G(π,x)(µ0)] such that the expected

payoffs of Sender in both assessments are the same.

The canonical MDMB we constructed is as follows: for any µ ∈ ∆(Θ), θ ∈ Θ,

π(µ|θ) =
∑

s∈S,t≥0,µ(s,t)=µ,m∈M

ϕ(s, t|m)σ(m|θ), (14)

and for any µ ∈ ∆(Θ)

x(µ) =


∑

s∈S,t≥0,µ(s,t)=µ ϕ(s,t|m)σ(m|θ)t∑
s∈S,t≥0,µ(s,t)=µ ϕ(s,t|m)σ(m|θ)

∑
s∈S,t≥0,µ(s,t)=µ ϕ(s, t|m)σ(m|θ) ̸= 0

0 otherwise
. (15)

Note that the above canonical MDMB is well-defined since the support of ϕ(m) is finite.

The canonical assessment (σ∗, α∗, µ∗) we constructed is as follows: for all θ, σ∗(θ|θ) =

1, for all µ ∈ ∆(Θ), µ∗(µ) = µ, for all µ ∈ supp{π(θ)} for some θ ∈ Θ

α∗(µ) =
∑

s∈S,t≥0,µ(s,t)=µ

∑
θ∈Θ,m∈M µ0(θ)σ(m|θ)ϕ(s, t|m)∑

s′∈S,t′≥0,µ(s′,t′)=µ

∑
θ∈Θ,m∈M µ0(θ)σ(m|θ)ϕ(s′, t′|m)

α(s, t).

and for µ ̸∈ supp{π(θ)} for any θ ∈ Θ α∗(µ) is any best response given posterior belief

µ.
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Subsequently, we will verify that the canonical assessments (σ∗, α∗, µ∗) ∈ E [Gπ,x(µ0)]

and the payoffs of Sender in that canonical assessments and original assessments are the

same.

Before the verification, we prove the following lemma.

Lemma 1. Suppose µ = µ(s, t) ∈ supp{π(θ̂)} for some θ̂, then

∑
θ∈Θ,m∈M µ0(θ)σ(m|θ)ϕ(s, t|m)∑

µ(s′,t′)=µ

∑
θ∈Θ,m∈M µ0(θ)σ(m|θ)ϕ(s′, t′|m)

=

∑
m∈M σ(m|θ̂)ϕ(s, t|m)∑

µ(s′,t′)=µ

∑
m∈M σ(m|θ̂)ϕ(s′, t′|m)

.

Proof of Lemma 1. It is sufficed to show that for any θ̂, θ̄ ∈ supp{µ}, we have

∑
m∈M σ(m|θ̂)ϕ(s, t|m)∑

µ(s′,t′)=µ

∑
m∈M σ(m|θ̂)ϕ(s′, t′|m)

=

∑
m∈M σ(m|θ̄)ϕ(s, t|m)∑

µ(s′,t′)=µ

∑
m∈M σ(m|θ̄)ϕ(s′, t′|m)

. (16)

According to Bayes updating, for any s′′ ∈ S, t′′ ≥ 0 such that µ(s, t) = µ(s′′, t′′), we

have that

µ0(θ̂)
∑

m∈M σ(m|θ̂)ϕ(s, t|m)

µ0(θ̄)
∑

m∈M σ(m|θ̄)ϕ(s, t|m)
=

µ(θ̂|s, t)
µ(θ̄|s, t)

=
µ(θ̂|s′′, t′′)
µ(θ̄|s′′, t′′)

=
µ0(θ̂)

µ0(θ̄)
∑

m∈M σ(m|θ̄)ϕ(s′′, t′′|m)
.

Thus, ∑
m∈M σ(m|θ̂)ϕ(s, t|m)∑

m∈M σ(m|θ̂)ϕ(s′′, t′′|m)
=

∑
m∈M σ(m|θ̄)ϕ(s, t|m)∑

m∈M σ(m|θ̄)ϕ(s′′, t′′|m)
.

Since s′′, t′′ can be any one satisfying that µ(s′′, t′′) = µ, Equation 16 holds.

Sender’s optmality and payoff equivalence: To show Sender’s optimality and

the payoff equivalence, it is sufficient to show that the expected payoffs of type θ Sender

under both assessments are the same. The expected payoff of type θ Sender under the

assessment (σ, α, µ) is

∑
m∈M,s∈S,t≥0,a∈A

σ(m|θ)ϕ(s, t|m)α(a|s, t)(v(a)− t).

The expected payoff of type θ Sender under the assessment (σ∗, α∗, µ∗) is

∑
µ∈supp{π(θ)},a∈A

π(µ|θ)α∗(a|µ)(v(a)− x(µ)).
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Those two expected payoff are the same, since by Lemma 1, for any a ∈ A, s ∈ S, t ≥ 0

the coefficient of α(a|s, t) where µ(s, t) = µ ∈ supp{π(θ)} in the expression

∑
µ∈supp{π(θ)},a∈A

π(µ|θ)α∗(a|µ)(v(a)− x(µ))

is

∑
s′,t′,m,µ(s′,t′)=µ

σ(m|θ)ϕ(s′, t′|m)

∑
θ′∈Θ,m∈M µ0(θ

′)σ(m|θ′)ϕ(s, t|m)∑
s′∈S,t′≥0,µ(s′,t′)=µ

∑
θ′∈Θ,m∈M µ0(θ′)σ(m|θ′)ϕ(s′, t′|m)

v(a)

=
∑
m

σ(m|θ)ϕ(s, t|m)v(a),

and expected money burning of type θ Sender of (σ∗, α∗, µ∗) is

∑
µ∈supp{π(θ)},a∈A

π(µ|θ)α∗(a|µ)x(µ) =
∑

µ∈supp{π(θ)}

π(µ|θ)x(µ) =
∑

m∈M,s∈S,t≥0

σ(m|θ)ϕ(s, t|m)t.

Receiver’s optmality: Observe that

arg max
α(s,t)∈∆(a)

∑
θ∈Θ,a∈A

µ(θ|s, t)α(a|s, t)(u(a, θ)+t) = arg max
α(s,t)∈∆(a)

∑
θ∈Θ,a∈A

µ(θ|s, t)α(a|s, t)u(a, θ).

Since α(s, t) is the best response under the belief µ(s, t) and α∗(µ) is a convex combination

of some α(s′, t′) where µ(s′, t′) = µ, by the convexity of best response set, α∗(µ) must

satisfies the Receiver’s optimality condition.

Bayes updating: Given µ ∈ ∆(Θ), for any s, t such that µ(s, t) = µ = µ∗(µ), by

Bayes updating, we have that for any θ ∈ Θ

µ(θ|s, t)
∑

θ′∈Θ,m∈M

µ0(θ
′)σ(m|θ′)ϕ(s, t|m) = µ0(θ)

∑
m∈M

σ(m|θ)ϕ(s, t|m).

Hence,

µ(θ)
∑

s,t,µ(s,t)=µ

∑
θ′∈Θ,m∈M

µ0(θ
′)σ(m|θ′)ϕ(s, t|m) =

∑
s,t,µ(s,t)=µ

µ0(θ)
∑
m∈M

σ(m|θ)ϕ(s, t|m).

That is

µ∗(θ|µ)
∑
θ′

µ0(θ
′)π(µ|θ′) = µ0(θ)π(µ|θ).
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Proof of Proposition 2. According to belief-based approach, p ∈ ∆(∆(Θ)) and ex-post

payoff V is induced by a canonical MDMB, if and only if they satisfy that V (µ) ∈ V(µ),

p ∈ BP (µ0) and for any θ, θ′ ∈ Θ,

∫
µ

µ(θ)

µ0(θ)
(V (µ)− x(µ))dp(µ) ≥

∫
µ

µ(θ′)

µ0(θ′)
(V (µ)− x(µ))dp(µ).

By swap θ, θ′ in above inequality, we can get

∫
µ

µ(θ)

µ0(θ)
(V (µ)− x(µ))dp(µ) =

∫
µ

µ(θ′)

µ0(θ′)
(V (µ)− x(µ))dp(µ).

Proof of Corollary 1. According to Proposition 2, we only need to show that, to calculate

V∗(µ0), it is without loss of generality to assume V (µ) = maxV(µ).

Suppose there is p ∈ BP (µ0), x, V : ∆(Θ) → R such that there exists µ ∈ supp{p}

satisfying that V (µ) ̸= maxV(µ), then we construct V ′, x′ such that at posterior µ,

V ′(µ) = maxV(µ) and x′(µ) = x(µ) + V ′(µ) − V (µ). Now p, x′, V ′ also satisfies the

constraints of Equation 8 without reducing the Sender’s payoff.

Proof of Proposition 3. This proof is based on general characterization in Section 4.

By Proposition 4, it suffices to show that there exists θi ∈ {θ1, θ2} such that for any

p ∈ BP (µ0) with L(θi, p) = cav(V̂θi)(µ0), we have L(θi, p) ≤ L(θ3−i, p).

Let U = {µ|V (µ) = maxx∈[0,1] V (x)} denote the range of posteriors that yield the

maximum value for Sender, for µ ∈ [0, 1]. Since U is convex and V (·) is upper semi-

continuous, U can be expressed as the union of closed intervals. We assume that l = minU

and r = maxU . If l ≤ µ0 ≤ r, then it is clear that V ∗(µ0) = maxx∈[0,1] V (x) and for any

θi, cav(V̂θi)(µ0) = V ∗(µ0), which is a constant. Hence, our statement holds trivially. In

the following proof, we consider µ0 > r or µ0 < l.

Without loss of generality, we assume that µ0 > r ≥ 0 by symmetry. We focus on θ1.

We prove by contradiction that if there exists p ∈ BP (µ0) with L(θ1, p) = cav(V̂θ1)(µ0)

and L(θ1, p) > L(θ2, p), then we reach a contradiction. Since p ∈ BP (µ0) performs

the concavification of the function V̂θ1 at point µ0, by Proposition 9 of the working

paper version of Kamenica and Gentzkow [2011], we have that the points (µ, V̂θ1(µ)) for
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µ ∈ supp{p} are collinear. This means that there exist parameters k, b such that for any

µ ∈ supp{p},
µ

µ0

V (µ) = kµ+ b.

Since L(θ1, p) > L(θ2, p), we have

∫
µ

(µ− µ0)V (µ)dp(µ) > 0.

Substituting V (µ) with µ0(k + b
µ
) and using

∫
µ
(µ− µ0)dp(µ) = 0, we obtain

b(1−
∫
µ

µ0

µ
dp(µ)) =

∫
µ

(µ− µ0)
b

µ
dp(µ) > 0.

By Cauchy’s inequality,

∫
µ

µ0

µ
dp(µ) =

∫
µ

µ

µ0

dp(µ)

∫
µ

µ0

µ
dp(µ) ≥ (

∫
µ

dp(µ))2 = 1.

Therefore, we must have b < 0. However, kµ + b is the concavification line of V̂θ1(·) at

µ0. Thus, it must satisfy that for any µ ∈ [0, 1], V̂θ1(µ) ≤ kµ+ b. Choosing µ = 0, we get

b ≥ 0. This is a contradiction.

Proof of Theorem 1. Before delving into the main body of the proof, we first prove a

lemma of upper bound of V∗(µ0) and show our construction method.

Lemma 2. V∗(µ0) ≤ maxπ minθ∈Θ Vπ(θ).

Proof of Lemma 2. For any canonical MDMB (π, t), by incentive-compatible constraint,

the Sender’s payoff under this mechanism is

Vπ(θ)−
∑

µ∈supp{π(θ)}

π(µ|θ)x(µ),

and by incentive-compatible constraints, for any θ, θ′,

Vπ(θ)−
∑

µ∈supp{π(θ)}

π(µ|θ)x(µ) = Vπ(θ
′)−

∑
µ∈supp{π(θ)}

π(µ|θ′)x(µ).
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Then by x(m) ≥ 0, we know that the Sender’s payoff is no larger than minθ∈Θ Vπ(θ).

Hence, V∗(µ0) ≤ maxπ minθ∈Θ Vπ(θ).

In order to achieve the upper bound, we use the method implied by the following

proposition to obtain the minimum interim signaling payoff for any given signaling scheme

π.

Proposition 8. Given any signaling scheme π : Θ → ∆(∆(Θ)), we construct an MDMB

(π̄, x̄),

π̄(µ|θ) =

 (1− δ)π(µ|θ) µ(θ|θ) ̸= 1

δ + (1− δ)π(µ|θ) µ(θ|θ) = 1
, x(·) =

 0 µ(θ|θ) ̸= 1

1
π̄(µ|θ)(Vπ̄(θ)−minθ∈Θ Vπ̄(θ)) µ(θ|θ) = 1

.

The mechanism (π̄, x̄) is incentive-compatible for δ ∈ (0, 1) and the Sender’s payoff under

this mechanism converges to minθ∈Θ Vπ(θ) as δ → 0+.

Proof of Proposition 8. Given that Vπ̄(θ) − minθ∈Θ Vπ̄(θ) ≥ 0, it follows that x(µ) ≥ 0

for all µ ∈ ∆(Θ). Therefore, for any θ ∈ Θ, the Sender’s payoff of type θ under the

mechanism (π̄, x) is equal to

Vπ̄(θ)−
∑

µ∈supp{π(θ)}

π̄(µ|θ)x(µ) = min
θ∈Θ

Vπ̄(θ).

This implies that the mechanism is incentive-compatible. Moreover, the Sender’s ex-

pected payoff is minθ∈Θ Vπ̄(θ).

Next, we show that the corresponding canonical assessments also satisfies Bayes up-

dating condition under this MDMB mechanism. Let µθ ∈ ∆(Θ) be such that µθ(θ) = 1

and µθ(θ
′) = 0 for any θ′ ̸= θ. Let µ∗

π(µ) and µ∗
π̄(µ) denote the posterior beliefs under the

signaling schemes π and π̄ for any µ ∈ ∆(Θ), respectively. For any µ ∈ ∆(Θ), we have

that

µ∗
π̄(θ|µ) =

π̄(µ|θ)µ0(θ)∑
θ′∈Θ π̄(µ|θ′)µ0(θ′)

=
π(µ|θ)µ0(θ)∑

θ′∈Θ π(µ|θ′)µ0(θ′)
= µ∗

π(θ|µ).

Thus, µ∗
π(µ) = µ if and only if µ∗

π̄(µ) = µ. Hence, Vπ̄(θ) =
∑

µ∈supp{π(θ)} π̄(µ|θ)V (µ) =

(1− δ)Vπ(θ) + δV (µθ). It follows that

lim
δ→0+

min
θ∈Θ

{Vπ̄(θ)} = lim
δ→0+

min
θ∈Θ

{(1− δ)Vπ(θ) + δV (µθ)} = min
θ∈Θ

Vπ(θ).
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We now return to the problem of attaining the upper bound of the value of the MDMB

derived by Lemma 2. As per the construction in Proposition 8, if the Sender adopts the

signaling scheme that maximizes the worst-case interim signaling payoff, the Sender’s

payoff will achieve maxπ minθ∈Θ Vπ(θ). Hence, we obtain V∗(µ0) = maxπ minθ∈Θ Vπ(θ).

So, we obtain the upper bound and get that V∗(µ0) = maxπ minθ∈Θ Vπ(θ). In addition,

based on our construction in Proposition 8, we demonstrate that in an optimal MDMB,

messages are divided into two functions: one is for persuasion and the other one is for

money burning to obtain commitment power. Thus, we can decompose the design of

MDMB into two steps (the information design step and the mechanism design step): the

first step is to identify an optimal signaling scheme that attains the maximum minimum

interim signaling payoff; the second step is to devise the additional messages solely for

commitment.

For λ ∈ ∆(Θ), p ∈ BP (µ0), let

L(λ, p) ≜
∫
µ

V̂λ(µ)dp(µ).

We have ∆(Θ), BP (µ0) are both convex and compact. Further by V̂ (µ) is upper semi-

continuous 8, then L(λ, p) is continuous and linear in λ, and also it is upper semi-

continuous and linear in p. Thus according to Sion’s minimax theorem, we have that

max
p∈BP (µ0)

min
λ∈∆(Θ)

L(λ, p) = min
λ∈∆(Θ)

max
p∈BP (µ0)

L(λ, p).

Next by Kamenica and Gentzkow [2011], we know that for any given λ,

max
p∈BP (µ0)

L(λ, p) = cav(V̂λ)(µ0).

Since L(λ, p) in linear in λ, then

max
p∈BP (µ0)

min
λ∈∆(Θ)

L(λ, p) = max
π

min
θ∈Θ

Vπ(θ) = V∗(µ0).

So V∗(µ0) = cav(V̂λ)(µ0).

8See Lipnowski and Ravid [2020] footnote 13
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Proof of Proposition 4. Since ∆(Θ) and BP (µ0) are compact sets, by extensions of Sion’s

minmax theorem Arandjelović [1992], there exists a saddle point (λ0, p0) such that

max
p∈BP (µ0)

min
λ∈∆(Θ)

L(λ, p) = min
λ∈∆(Θ)

max
p∈BP (µ0)

L(λ, p) = L(λ0, p0).

Next, we show that for any saddle point (λ1, p1) of L, we have L(λ0, p0) = L(λ1, p1).

We prove by contradiction and assume, without loss of generality, that L(λ0, p0) <

L(λ1, p1). Then, by the property of saddle point, we have

L(λ0, p1) ≤ L(λ0, p0) < L(λ1, p1).

The inequality L(λ0, p1) < L(λ1, p1) contradicts the fact that (λ1, p1) is a saddle point.

Suppose that λ∗ satisfies the following conditions: there exists p∗ ∈ BP (µ0) such that

L(λ∗, p∗) = cav(V̂λ∗)(µ0), and for any θ ∈ supp(λ∗), L(λ∗, p∗) = L(θ, p∗) and for any

θ ̸∈ supp(λ∗), L(λ∗, p∗) ≤ L(θ, p∗). Then, by definition, we have that (λ∗, p∗) is a saddle

point and L(λ∗, p∗) = L(λ0, p0). Hence, λ
∗ is the worst subjective prior.

If λ∗ is the worst subjective prior, then choosing p∗ is optimal and we can obtain that

L(λ0, p0) = min
λ

max
p

L(λ, p) ≥ L(λ∗, p∗) ≥ max
p

min
λ

L(λ, p) = L(λ0, p0).

Therefore, L(λ∗, p∗) = L(λ0, p0) is the mini-max or max-min value. It follows that for

any λ ∈ ∆(Θ), L(λ, p∗) ≥ L(λ∗, p∗) and for any p ∈ BP (µ0), L(λ∗, p) ≤ L(λ∗, p∗). Thus,

(λ∗, p∗) is a saddle point and it must satisfy that L(λ∗, p∗) = cav(V̂λ∗)(µ0), and for any

θ ∈ supp(λ∗), L(λ∗, p∗) = L(θ, p∗) and for any θ ̸∈ supp(λ∗), L(λ∗, p∗) ≤ L(θ, p∗).

Proof of Proposition 5. The proof is analogous to the proof of Proposition 4.

Proof of Theorem 2. In this proof, V (µ) is no longer simply represents maxV(µ). Back

to the proof of Proposition 1, our construction of x in Equation 15 satisfies that if it is

only possible that t ≤ C, then x(µ) ≤ C for all µ. Hence, the revelation principle can

directly be generalized to this case by adding a new constraint that x(µ) ≤ C for all

µ ∈ ∆(Θ).
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According to Proposition 2, Corollary 1 and previous discussions, we begin by char-

acterizing V∗
C(µ0) as following optimization problem.

max k (17)

s.t k =

∫
µ

µ(θ)

µ0(θ)
(V (µ)− x(µ))dp(µ) ∀θ ∈ Θ (IC)

p ∈ BP (µ0) (Bayes plausible)

V (µ) ∈ V(µ) ∀µ ∈ ∆(Θ) (Obedience)

0 ≤ x(µ) ≤ C ∀µ ∈ ∆(Θ)

We adopt a two-step optimization approach. First, we fix the signaling scheme p ∈

BP (µ0) and obedience condition V (µ) and then we find the optimal burning scheme x(µ)

where 0 ≤ x(µ) ≤ C. Thus, now it is a linear programming problem. By the fundamental

theorem of linear programming, we can also obtain V∗
C(µ0) from the following max-min

problem.

max
p,V

min
λ

∫
µ

(
∑
θ∈Θ

λ(θ)
µ(θ)

µ0(θ)
V (µ) + Cmax{0,−

∑
θ∈Θ

λ(θ)
µ(θ)

µ0(θ)
})dp(µ) (18)

s.t p ∈ BP (µ0)

V (µ) ∈ V(µ) ∀µ ∈ ∆(Θ)∑
θ∈Θ

λ(θ) = 1

Given any signaling scheme p ∈ BP (µ0), since V(µ) is a compact and convex set, and∫
µ
(
∑

θ∈Θ λ(θ) µ(θ)
µ0(θ)

V (µ) +Cmax{0,−
∑

θ∈Θ λ(θ) µ(θ)
µ0(θ)

})dp(µ) is convex in λ, and linear in

V (µ), by Sion’s minimax theorem we can interchange the maxV and minλ. Hence, we

can obtain that V∗
C(µ0) can be solved by

max
p∈BP (µ0)

min∑
θ λ(θ)=1

∫
µ

max{
∑
θ∈Θ

λ(θ)
µ(θ)

µ0(θ)
maxV(µ),

∑
θ∈Θ

λ(θ)
µ(θ)

µ0(θ)
(minV(µ)− C)}dp(µ).

(19)

This implies that we choose V (µ) = maxV(µ(m)) if
∑

θ∈Θ λ(θ) µ(θ)
µ0(θ)

> 0 and V (µ) =

minV(µ(m)) if
∑

θ∈Θ λ(θ) µ(θ)
µ0(θ)

< 0, which determines the best response selection rule.

40



Thus, we have shown that

V∗(µ0) = max
p∈BP (µ0)

min∑
θ λ(θ)=1

LC(λ, p).

The rest of the proof relies on Sion’s minimax theorem as well. It is easy to verify that

BP (µ0) is a compact and convex set, and {λ|
∑

θ λ(θ) = 1} is a convex set. Moreover,

LC(λ, p) is linear in p and convex in λ since it is the maximum of two linear functions.

Furthermore, LC(λ, p) is continuous in λ. Since maxV(µ) and minV(µ) − C are upper

and lower semi-continuous, respectively, we have that
∑

θ∈Θ λ(θ) µ(θ)
µ0(θ)

maxV(µ) is upper

semi-continuous when
∑

θ∈Θ λ(θ) µ(θ)
µ0(θ)

> 0 and
∑

θ∈Θ λ(θ) µ(θ)
µ0(θ)

(minV(µ) − C) is upper

semi-continuous when
∑

θ∈Θ λ(θ) µ(θ)
µ0(θ)

< 0. Therefore,

V̂λ,C(µ) = max{
∑
θ∈Θ

λ(θ)
µ(θ)

µ0(θ)
maxV(µ),

∑
θ∈Θ

λ(θ)
µ(θ)

µ0(θ)
(minV(µ)− C)}

is upper semi-continuous and so is LC(λ, p) in p. Hence, we can apply Sion’s minimax

theorem directly and complete the proof.

Proof of Proposition 6. By Fact 1, it suffices to show that V∗
CT (µ0) = V∗

BP (µ0). Since

V∗(µ0) = V∗
BP (µ0), by Theorem 1, let λ∗ ∈ ∆(Θ) be the worst subjective prior and

p∗ ∈ BP (µ0) be the optimal distribution of posterior that maximizes the minimum interim

payoff. Then we have L(λ∗, p∗) = V∗
BP (µ0). Hence, for any θ, we must have

∫
µ

µ(θ)

µ0(θ)
maxV(µ)dp∗(µ) = V∗

BP (µ0),

Otherwise, L(λ∗, p∗) = minθ

∫
µ

µ(θ)
µ0(θ)

maxV(µ)dp∗(µ) < V∗
BP (µ0), since L(λ∗, p∗) is the

minimum interim payoff and V∗
BP (µ0) is the expected interim payoff. Therefore,

V∗
BP (µ0) =

∑
θ

µ0(θ)V∗
BP (µ0) =

∫
µ

maxV(µ)dp∗(µ).

Thus, p∗ is also the concavification of maxV(·) at point µ0. By the same technique

of proposition 9 of the working paper version of Kamenica and Gentzkow [2011], we

deduce that (µ,maxV(µ)) for µ ∈ supp{p∗} are coplanar. This means that there exist
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parameters Aθ for θ ∈ Θ such that for µ ∈ supp{p∗},

maxV(µ) =
∑
θ

Aθµ(θ).

Then, for any θ, we have

∫
µ

µ(θ)
∑
θ′

Aθ′µ(θ
′)dp∗(µ) = µ0(θ)

∑
θ

Aθµ0(θ),

Multiplying by Aθ and summing over θ, we obtain

∫
µ

(
∑
θ

Aθµ(θ))
2dp∗(µ) = (

∑
θ

Aθµ0(θ))
2.

By Cauchy inequality, we have

(
∑
θ

Aθµ0(θ))
2 =

∫
µ

dp∗(µ)

∫
µ

(
∑
θ

Aθµ(θ))
2dp∗(µ) ≥ (

∫
µ

Aθµ(θ)dp
∗(µ))2 = (

∑
θ

Aθµ0(θ))
2.

Therefore, we get
∑

θ Aθµ(θ) =
∑

θ Aθµ
′(θ) for all µ, µ′ ∈ supp{p∗}, which implies that

maxV(µ) = maxV(µ′). This means that all the posterior beliefs induce the same value

for Sender, so p∗ is also a cheap talk equilibrium, i.e., Sender cannot find a more profitable

message. Hence, V∗
CT (µ0) = V∗

BP (µ0).

Proof of Theorem 3. To facilitate the whole proof, we first establish two lemmas that

reveal some useful properties of V∗(µ) and one important proposition.

Lemma 3. For any signaling scheme p ∈ BP (µ0), we have that

V∗(µ0) ≥ min
θ∈supp{µ0}

∫
µ

µ(θ)

µ0(θ)
V∗(µ)dp(µ).

Proof of Lemma 3. Let pµ denote the optimal signaling scheme that maximizes the min-

imum interim payoff under any prior µ ∈ supp{p}. We consider a signaling scheme

for µ0 that consists of two stages: first, it splits µ0 according to p, and then, for each

µ ∈ supp{p}, it further splits µ according to pµ. By applying this scheme, we obtain the

following inequality:

V∗(µ0) ≥ min
θ∈supp{µ0}

{
∫
µ

∫
µ′

µ′(θ)

µ0(θ)
V (µ′)dp(µ)dpµ(µ

′)} = min
θ∈supp{µ0}

∫
µ

µ(θ)

µ0(θ)
V∗(µ)dp(µ).
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Lemma 4. V∗(µ) is continuous at any full-support point µ, i.e. µ(θ) > 0 for all θ ∈ Θ.

Proof of Lemma 4. We begin by recalling that, by Theorem 1, V∗(µ) is the infimum of

a family of continuous functions, namely the concave closures. Hence, V∗(µ) is upper

semi-continuous. Without loss of generality, we assume that v(a) ≥ 0 for all a ∈ A.

Suppose that V∗(µ) is discontinuous at some point µ with full support. Then there exist

two priors µ1, µ2 ∈ ∆(Θ) and a positive constant D such that, for some sufficiently small

constant B(D,µ1, µ2) (denoted by B), we have V∗(µ) > V∗(µ + ε(µ1 − µ2)) + D for all

ε ∈ (0, B). Let µε = µ + ε(µ1 − µ2) for any ε > 0 such that ε < B and ε2 < B. We can

rewrite µε as µε = (1−
√
ε)µ+

√
ε(µ+

√
ε(µ1 − µ2)). Applying Lemma 3, we get

V∗(µε) ≥ min
θ
{(1−

√
ε)

µ(θ)

µε(θ)
V∗(µ) +

√
ε
µ(θ) +

√
ε(µ1(θ)− µ2(θ))

µε(θ)
V∗(µ+

√
ε(µ1 − µ2))}

≥ min
θ
{(1−

√
ε)

µ(θ)

µε(θ)
V∗(µ)}.

Because µ(θ) > 0 for any θ, limε→0+(1 −
√
ε) µ(θ)

µε(θ)
= 1. Therefore it follows that

limε→0+ V∗(µε) ≥ V∗(µ), which contradicts the assumption that V∗(µε) < V∗(µ)−D.

Proposition 9. Assuming that V∗(µ) is continuous, we obtain V∗
CT (µ0) = V∗

0 (µ0) =

V∗(µ0) when V∗(µ0) = V∗
0 (µ0).

Proof of Proposition 9. If V∗ is continuous at the boundary, then V∗ is continuous at any

point in ∆(Θ). To this end, we adopt a proof by contradiction. Let µ0 be a belief with

the smallest support such that V∗
CT (µ0) < V∗(µ0) = V∗

0 (µ0). Then, applying Theorem 1

and Theorem 2, we infer that there is a posterior distribution p∗ that yields the same

interim payoff for every θ under p∗. By Proposition 5, we obtain that there is a worst

subjective prior λ∗ ∈ ∆(Θ) such that for any θ,

∫
µ

µ(θ)

µ0(θ)
maxV(µ)dp∗(µ) =

∫
µ

∑
θ

λ∗(θ)µ(θ)

µ0(θ)
maxV(µ)dp∗(µ),

and p∗ is the concavification of
∑

θ
λ∗(θ)µ(θ)
µ0(θ)

maxV(µ) at point µ0. Then we have that
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there exist parameters Aθ for θ ∈ Θ and for any µ ∈ supp{p∗},

∑
θ

λ∗(θ)µ(θ)

µ0(θ)
maxV(µ) =

∑
θ

Aθµ(θ).

Let Θ′ = {θ
∣∣λ∗(θ) = 0}, U2 = {µ ∈ supp{p∗}

∣∣supp{µ} ⊆ Θ′}, and U1 = supp{p∗}/U2.

Hence, we obtain that

∫
µ∈U1

∑
θ

Aθµ(θ)

∑
θ Aθµ(θ)∑
θ
λ∗(θ)µ(θ)
µ0(θ)

dp∗(µ) = (
∑
θ

Aθµ0(θ))
2.

Since
∫
µ∈U1

∑
θ
λ∗(θ)µ(θ)
µ0(θ)

dp∗(µ) = 1, by Cauchy’s inequality and the above equation, we

also have that for any µ, µ′ ∈ U1,∑
θ Aθµ(θ)∑
θ
λ∗(θ)µ(θ)
µ0(θ)

=

∑
θ Aθµ

′(θ)∑
θ
λ∗(θ)µ′(θ)

µ0(θ)

.

This implies that maxV(µ) = maxV(µ′) for µ, µ′ ∈ U1. To simplify the notation, we set

this value to be R, which coincides with V∗(µ0) and V∗
0 (µ0).

If U2 = ∅, then it is also a cheap talk equilibrium and we obtain that V∗(µ0) = V∗
CT (µ0).

Otherwise, let p1 =
∫
µ∈U1

dp∗(µ), p2 =
∫
µ∈U2

dp∗(µ) and µ1 =
∫
µ∈U1

µdp∗(µ)/p1, µ2 =∫
µ∈U2

µdp∗(µ)/p2. Since supp{µ2} < supp{µ0}, we must have V∗(µ2) = V∗
0 (µ2) if and

only if V∗(µ2) = V∗
CT (µ2). Then for any θ ∈ supp{µ2}, we have that

R =

∫
µ

µ(θ)

µ0(θ)
maxV(µ)dp∗(µ) = p1

µ1(θ)

µ0(θ)
R + p2

µ2(θ)

µ0(θ)

∫
µ∈U2

µ(θ)

µ2(θ)
maxV(µ)d

p∗(µ)

p2
.

Hence, ∫
µ∈U2

µ(θ)

µ2(θ)
maxV(µ)d

p∗(µ)

p2
= R.

This implies that V0(µ2) ≥ R. Next we will divide our final proof into two cases.

Case 1: If V∗(µ2) = R, we have V∗(µ2) = V0(µ2), which implies that VCT (µ2) = R.

Furthermore, since maxV(µ) = R for all µ ∈ U1, we can deduce that there exists a cheap

talk equilibrium for µ0 where Sender achieves payoff R. This means that we have shown

that VCT (µ0) = R, which contradicts our assumption.

Case 2: Suppose that V∗(µ2) > R. Given the continuity of V∗(µ), we can find a

positive constant ε > 0, such that V∗( εµ1+p2µ2

ε+p2
) > R and µ0 = (p1−ε)µ1+(ε+p2)

εµ1+p2µ2

ε+p2
.

44



Hence by Lemma 3, we have that

V∗(µ0) ≥ min
θ∈supp{µ0}

{(p1 − ε)
µ1(θ)

µ0(θ)
V∗(µ1) +

εµ1(θ) + p2µ2(θ)

µ0(θ)
V∗(

εµ1 + p2µ2

ε+ p2
)}.

Since V∗(µ1) ≥ R, V∗( εµ1+p2µ2

ε+p2
) > R and for θ ∈ supp{µ0}, εµ1(θ)+ p2µ2(θ) > 0, we will

get that

V∗(µ0) > R,

which is also a contradiction.

Back to the proof of Theorem 3, without loss of generality, we assume that v(a) ≥ 0

for all a ∈ A. According to Proposition 9 and Lemma 4, it is suffice to show that under

generic settings V∗ is continuous at the boundary of ∆(Θ). To prove this, we firstly prove

the following lemma.

Lemma 5. For any belief µ at the boundary and any direction µ1 ∈ ∆(Θ), we have

lim
ε→0+

V∗((1− ε)µ+ εµ1) ≥ V (µ).

proof of Lemma 5. If supp{µ1} ⊆ supp{µ}, then by Lemma 4, we can get

lim
ε→0+

V∗((1− ε)µ+ εµ1) = V∗(µ) ≥ V (µ).

Consider the case where supp{µ1} ̸⊆ supp{µ}. By the genericity of the setting, we can

find a belief µ2 such that supp{µ2} = supp{µ} and V (µ2) = V (µ), and moreover, the

singleton RO(µ2) ⊆ RO(µ). It follows that for any γ ∈ (0, 1), we have RO((1 − γ)µ +

γµ2) = RO(µ2) and V ((1− γ)µ+ γµ2) = V (µ). Let µγ = (1− γ)µ+ γµ2. Since RO(µγ)

is a singleton, implying that the action in this singleton dominates all other actions, we

can identify the largest εγ such that 0 < εγ < 1 and RO(µ2) ⊆ RO((1 − εγ)µγ + εγµ1).

We then proceed to examine two cases.

Case 1: limγ→0+ εγ ̸= 0, which means that limε→0+ V (εµ1 + (1− ε)µ) = V (µ). Thus,

lim
ε→0+

V∗((1− ε)µ+ εµ1) ≥ lim
ε→0+

V ((1− ε)µ+ εµ1) = V (µ).

Case 2: limγ→0+ εγ = 0. Then consider following splitting scheme of (1−εγ)µ0+εγµ1
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that

(1− εγ)µ0 + εγµ1 = min
θ

(1− εγ)µ0(θ) + εγµ1(θ)

(1− εγ)µγ(θ) + εγµ1(θ)
((1− εγ)µγ + εγµ1) + P2µ

′

where P2 = 1−minθ
(1−εγ)µ0(θ)+εγµ1(θ)

(1−εγ)µγ(θ)+εγµ1(θ)
and µ′ ∈ ∆(Θ). By Lemma 3 we have that

lim
ε→0+

V∗((1− ε)µ+ εµ1) = lim
γ→0+

V∗((1− εγ)µ+ εγµ1)

≥ lim
γ→0+

min
θ

(1− εγ)µ0(θ) + εγµ1(θ)

(1− εγ)µγ(θ) + εγµ1(θ)
min
θ

(1− εγ)µγ(θ) + εγµ1(θ)

(1− εγ)µ0(θ) + εγµ1(θ)
V (µ).

For any θ ∈ supp{µ0},

lim
γ→0+

(1− εγ)µ0(θ) + εγµ1(θ)

(1− εγ)µγ(θ) + εγµ1(θ)
= lim

γ→0+

µ0(θ)

µγ(θ)
= 1,

and for any θ ∈ supp{µ1}/supp{µ0},

lim
γ→0+

(1− εγ)µ0(θ) + εγµ1(θ)

(1− εγ)µγ(θ) + εγµ1(θ)
= 1.

So we obtain that for any µ1 ∈ ∆(Θ),

lim
ε→0+

V∗((1− ε)µ+ εµ1) ≥ V (µ).

Building on Lemma 5, we demonstrate the continuity of V∗ at any point µ. Let p∗

be the optimal signaling scheme of µ0 that attains the minimum interim payoff, that is,

V∗(µ0) = minθ∈supp{µ0}
∫
µ

µ(θ)
µ0(θ)

V (µ)dp∗(µ). Then by Lemma 3, for any µ1 ∈ ∆(Θ), we

have that

lim
ε→0+

V∗((1− ε)µ0 + εµ1) ≥ lim
ε→0+

min
θ

∫
µ

(1− ε)µ(θ) + εµ1(θ)

(1− ε)µ0(θ) + εµ1(θ)
V∗((1− ε)µ+ εµ1)dp

∗(µ)

≥ V∗(µ0).

The last inequality holds because

lim
ε→0+

min
θ∈supp{µ0}

∫
µ

(1− ε)µ(θ) + εµ1(θ)

(1− ε)µ0(θ) + εµ1(θ)
V∗((1− ε)µ+ εµ1)dp

∗(µ) ≥ min
θ∈supp{µ0}

∫
µ

µ(θ)

µ0(θ)
V (µ)dp∗(µ),
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and for θ ∈ supp{µ1}/supp{µ0}

lim
ε→0+

∫
µ

(1− ε)µ(θ) + εµ1(θ)

(1− ε)µ0(θ) + εµ1(θ)
V∗((1− ε)µ+ εµ1)dp

∗(µ) ≥
∫
µ

V (µ)dp∗(µ)

=
∑
θ

µ0(θ)

∫
µ

µ(θ)

µ0(θ)
V (µ)dp∗(µ)

≥ min
θ∈supp{µ0}

∫
µ

µ(θ)

µ0(θ)
V (µ)dp∗(µ).

Using the fact that V∗ is upper-semi continuous, we establish the continuity of V∗.

Proof of Proposition 7. To show that V∗
0 (µ0) < V∗(µ0), it suffices to show that V∗

CT (µ0) <

V∗(µ0). By Corollary 2, we only need to construct a posterior distribution p ∈ BP (µ0)

such that the minimum interim payoff under this distribution is greater than V∗
CT (µ0).

Since the setting is generic, then there must be a full-support µ̂ such that V(µ̂) =

maxa∈A v(a). We define µ(x) = µ0−xµ̂
1−x

and, since µ0 has full support, there exists a small

enough ε > 0 such that µ(ε) ∈ ∆(Θ) and qcav(maxV)(µ(ε)) = qcav(maxV)(µ0). Let τ

be the distribution of posterior that is the quasi-concavification of maxV at point µ(ε).

Then we construct the distribution of posterior τ ∗ that acts as τ with probability 1 − ε

and induces the posterior µ̂ with probability ε. Then the interim payoff of type θ under

τ ∗ is

qcav(maxV)(µ0) + ε
µ̂(θ)

µ0(θ)
(maxV(µ̂)− qcav(maxV)(µ0))

Since qcav(maxV)(µ0) ̸= cav(maxV)(µ0), we have that maxV(µ̂) = maxa∈A v(a) >

qcav(maxV)(µ0). Hence, we obtain that V∗(µ0) > V∗
CT (µ0).
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